首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
A differential scanning calorimetry study of the thermal denaturation of Bacillus thermoproteolyticus rokko thermolysin was carried out. The calorimetric traces were found to be irreversible and highly scan-rate dependent. The shape of the thermograms, as well as their scan-rate dependence, can be explained by assuming that the thermal denaturation takes place according to the kinetic scheme N k----D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation, N the native state, and D the unfolded state or, more probably, a final state, irreversibly arrived at from the unfolded one. On the basis of this model, the value of the rate constant as a function of temperature and the activation energy have been calculated. It is shown that the proposed model may be considered as being one particular case of that proposed by Lumry and Eyring [Lumry, R., & Eyring, H. (1954) J. Phys. Chem. 58, 110] N in equilibrium D----I, where N is the native state, D the unfolded one, and I a final state, irreversibly arrived at from D. Lastly, some comments are made on the use of the scan-rate effect on the calorimetric traces as an equilibrium criterion in differential scanning calorimetry.  相似文献   

2.
The thermal denaturation of bovine fibrinogen has been investigated using differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy. Differential scanning calorimetry measurements were carried out while changing the scan-rate. The transition at 57 degrees C was found to be irreversible and highly scan-rate dependent, suggesting that the denaturation is, at least in part, under kinetic control. The secondary structural changes at various temperatures were monitored by far-ultraviolet CD spectroscopy. These results show that the DSC transition for the thermal denaturation of bovine fibrinogen can be interpreted in terms of a kinetic process, N --> F, where k is a first-order kinetic constant that changes with temperature according to the Arrhenius equation. An important transition peak was observed at 78.8 degrees C which is attributed to the C-terminal parts of the Aalpha chains of fibrinogen.  相似文献   

3.
The stabilities of Bacillus circulans xylanase and a disulfide-bridge-containing mutant (S100C/N148C) were investigated by differential scanning calorimetry (DSC) and thermal inactivation kinetics. The thermal denaturation of both proteins was found to be irreversible, and the apparent transition temperatures showed a considerable dependence upon scanning rate. In the presence of low (nondenaturing) concentrations of urea, calorimetric transitions were observed for both proteins in the second heating cycle, indicating reversible denaturation occurs under those conditions. However, even for these reversible processes, the DSC curves for the wild-type protein showed a scan-rate dependence that was similar to that in the absence of urea. Calorimetric thermograms for the disulfide mutant were significantly less scan-rate dependent in the presence of urea than in the urea-free buffer. The present data show that, just as for irreversible transitions, the apparent transition temperature for the reversible denaturation of proteins can be scan-rate dependent, confirming the prediction of Lepock et al. (Lepock JR, Rithcie KP, Kolios MC, Rodahl AM, Heinz KA, Kruuf J, 1992, Biochemistry 31:12706-12712). The kinetic factors responsible for scan-rate dependence may lead to significant distortions and asymmetry of endotherms, especially at higher scanning rates. This points to the need to check for scan-rate dependence, even in the case of reversible denaturation, before any attempt is made to analyze asymmetric DSC curves by standard thermodynamic procedures. Experiments with the disulfide-bridge-containing mutant indicate that the introduction of the disulfide bond provides additional stabilization of xylanase by changing the rate-limiting step on the thermal denaturation pathway.  相似文献   

4.
Thermal transitions of many proteins have been found to be calorimetrically irreversible and scan-rate dependent. Calorimetric determinations of stability parameters of proteins which unfold irreversibly according to a first-order kinetic scheme have been reported. These methods require the approximation that the increase in heat capacity upon denaturation deltaCp is zero. A method to obtain thermodynamic parameters and activation energy for the two-state irreversible process N --> D from nonlinear fitting to calorimetric traces is proposed here. It is based on a molar excess heat capacity function which considers irreversibility and a nonzero constant deltaCp. This function has four parameters: (1) temperature at which the calorimetric profile reaches its maximal value (Tm), (2) calorimetric enthalpy at Tm (deltaHm), (3) deltaCp, and (4) activation energy (E). The thermal irreversible denaturation of subtilisin BPN' from Bacillus amyloliquefaciens was studied by differential scanning calorimetry at pH 7.5 to test our model. Transitions were found to be strongly scanning-rate dependent with a mean deltaCp value of 5.7 kcal K(-1)mol(-1), in agreement with values estimated by accessible surface area and significantly higher than a previously reported value.  相似文献   

5.
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).  相似文献   

6.
Kinetic as well as energetic aspects of the thermal denaturation of Trichoderma reesei endo-1,4-beta-xylanase II (TRX II) and its three thermostable disulfide mutants were characterized by means of differential scanning calorimetry (DSC) in different solution conditions. The calorimetric transitions were strongly scan-rate dependent, characteristic for an irreversible, kinetically controlled protein denaturation. The DSC-determined T*-values (the temperature at which the denaturation rate constant equals 1min(-1)), and the activation free energies for the transitions are consistent with the apparent transition temperatures of TRX II determined earlier by mass spectrometry. Protein aggregation, connected with the irreversibility of the transitions, was present in all cases but was less pronounced with the mutants as well as highly dependent on experimental conditions.  相似文献   

7.
The thermal denaturation of Lactobacillus confusus l-2-Hydroxyisocaproate Dehydrogenase (l-HicDH) has been studied by Differential Scanning Calorimetry (DSC). The stability of this enzyme has been investigated at different pH conditions. The results of this study indicate that the thermal denaturation of this enzyme is irreversible and the T m is dependent on the scan-rate, which suggests that the denaturation process of l-HicDH is kinetically determined. The heat capacity function of l-HicDH shows a single peak with the T m values between 52.14°C and 55.89°C at pH 7.0 at different scan rates. These results indicate that the whole l-HicDH could unfold as a single cooperative unit, and intersubunit interactions of this homotetrameric enzyme must play a significant role in the stabilization of the whole enzyme. The rate constant of the unfolding is analyzed as a first order kinetic constant with the Arrhenius equation, and the activation energy has been calculated. The variation of the activation energy values obtained with different methods does not support the validity of the one-step irreversible model. The denaturation pathway was described by a three-state model, N → U → F, in which the dissociation of the tetramer takes place as an irreversible step before the irreversible unfolding of the monomers. The calorimetric enthalpy associated with the irreversible dissociation and the calorimetric enthalpy associated with the unfolding of the monomer were obtained from the best fitting procedure. Thermal unfolding of l-HicDH was also studied using Circular Dichroism (CD) spectroscopy. Both methods yielded comparable values.  相似文献   

8.
Thermal denaturation of Euphorbia latex amine oxidase (ELAO) has been studied by enzymatic activity, circular dichroism and differential scanning calorimetry. Thermal denaturation of ELAO is shown to be an irreversible process. Checking the validity of two-state it really describes satisfactorily the thermal denaturation of ELAO. Based on this model we obtain the activation energy, parameter T(*) (the absolute temperature at which the rate constant of denaturation is equal to 1 min(-1)), and total enthalpy of ELAO denaturation. HPLC experiments show that the thermal denatured enzyme conserves its dimeric state. The N(2)-->kD(2) model for thermal denaturation of ELAO is proposed: where N(2) and D(2) are the native and denatured dimer, respectively.  相似文献   

9.
日本血吸虫26kD抗原基因在BCG中的表达   总被引:5,自引:0,他引:5  
研究了外源基因日本血吸虫26kD抗原(Sj26GST)在卡介苗(bacilusCalmete-Guerin,BCG)、耻垢分枝杆菌(M.smegmatis)和大肠杆菌(E.coli)中的表达.运用重组DNA和聚合酶链反应(PCR)等分子生物学技术,以表达Sj26GST的E.colipGEX衍生质粒为模板,经PCR得到编码Sj26GST的全长cDNA片段.将其按正确的阅读框顺序,克隆到人结核杆菌热休克蛋白(heatshockprotein,HSP)70的启动子下游,再将HSP70启动子和Sj26GST基因一起亚克隆到E.coli-分枝杆菌穿梭质粒pBCG-2000中,得到E.coli-分枝杆菌穿梭表达质粒pBCG-Sj26.pBCG-Sj26电转化入BCG和M.smegmatismc2155中表达Sj26GST抗原,所表达的天然重组Sj26GST(rSj26GST)为可溶性蛋白,在SDS-PAGE上分子量为26kD处可见明显的表达蛋白带.其表达量分别占BCG和M.smegmatis菌体总蛋白的15%和10%.可见,Sj26GST基因能在BCG中高效表达.  相似文献   

10.
Thermal denaturation of penicillin acylase (PA) from Escherichia coli has been studied by high-sensitivity differential scanning calorimetry as a function of heating rate, pH and urea concentration. It is shown to be irreversible and kinetically controlled. Upon decrease in the heating rate from 2 to 0.1 K min(-1) the denaturation temperature of PA at pH 6.0 decreases by about 6 degrees C, while the denaturation enthalpy does not change notably giving an average value of 31.6+/-2.1 J g(-1). The denaturation temperature of PA reaches a maximum value of 64.5 degrees C at pH 6.0 and decreases by about of 15 degrees C at pH 3.0 and 9.5. The pH induced changes in the denaturation enthalpy follow changes in the denaturation temperature. Increasing the urea concentration causes a decrease in both denaturation temperature and enthalpy of PA, where denaturation temperature obeys a linear relation. The heat capacity increment of PA is not sensitive to the heating rate, nor to pH, and neither to urea. Its average value is of 0.58+/-0.02 J g(-1) K(-1). The denaturation transition of PA is approximated by the Lumry-Eyring model. The first stage of the process is assumed to be a reversible unfolding of the alpha-subunit. It activates the second stage involving dissociation of two subunits and subsequent denaturation of the beta-subunit. This stage is irreversible and kinetically controlled. Using this model the temperature, enthalpy and free energy of unfolding of the alpha-subunit, and a rate constant of the irreversible stage are determined as a function of pH and urea concentration. Structural features of the folded and unfolded conformation of the alpha-subunit as well as of the transition state of the PA denaturation in aqueous and urea solutions are discussed.  相似文献   

11.
A comparative study of thermal denaturation and inactivation of aspartate aminotransferase from pig heart mitochondria (mAAT) has been carried out (10 mM Na phosphate buffer, pH 7.5). Analysis of the data on differential scanning calorimetry shows that thermal denaturation of mAAT follows the kinetics of irreversible reaction of the first order. The kinetics of thermal inactivation of mAAT follows the exponential law. It has been shown that the inactivation rate constant (kin) is higher than the denaturation rate constant (kden). The kin/kden ratio decreases from 28.8 ± 0.1 to 1.30 ± 0.09 as the temperature increases from 57.5 to 77 °C. The kinetic model explaining the discrepancy between the inactivation and denaturation rates has been proposed. The size of the protein aggregates formed at heating of mAAT at a constant rate (1 °C min− 1) has been characterized by dynamic light scattering.  相似文献   

12.
The thermal denaturation of ribonuclease A has been studied by differential scanning calorimetry in the presence of 4-chlorobutan-1-ol. The thermal transitions were observed to be reversible at pH 5.5 in the presence of low concentration (up to 50 mM) of the alcohol, irreversible in the intermediate (50 mM < c < mM) and again reversible in the presence of 250 mM and higher concentrations of 4-chlorobutan-1-ol. In the presence of 50 mM 4-chlorobutan-1-ol, ribonuclease A is present in two conformational states unfolding at different temperatures. The reversible thermal transitions have been fitted to a two-state native-to-denatured mechanism. Irreversible thermal transitions have been analyzed according to two-state irreversible native-to-denatured kinetic model. Using the irreversible model, rate constant as a function of temperature and energy of activation of the irreversible process have been calculated. Circular dichroism and fluorescence spectroscopic results corroborate the DSC observations and indicate a protein conformation with poorly defined tertiary structure and high content of secondary structure in the presence of 50 mM 4-chlorobutan-1-ol at a temperature corresponding to the second transition. Similar results have been observed at pH 3.9.  相似文献   

13.
Porcine pancreatic procarboxypeptidase A and its tryptic peptides, carboxypeptidase A and the activation segment, have been studied by high-sensitivity differential scanning calorimetry (DSC). The thermal denaturation of the zymogen and the active enzyme has been carried out at two pH values, 7.5 and 9.0, at different ionic strengths and at different scan rates. The endothermic transitions for these two proteins were always irreversible under all conditions investigated. The denaturation behaviour of both proteins seems to fit very well with the kinetic model for the DSC study of irreversible unfolding of proteins recently proposed by one of our groups. From this model, the activation energies obtained for the denaturation of the pro- and carboxypeptidase were 300 +/- 20 kJ mol-1 and 250 +/- 14 kJ mol-1 respectively. On the other hand, the isolated activation segment appears as a thermostable piece with a highly reversible thermal unfolding which follows a two-state process. The denaturation temperature observed for the isolated segment was always at least 15 K higher than those of the zymogen and the active enzyme.  相似文献   

14.
Thermal denaturation of creatine kinase from rabbit skeletal muscle has been studied by differential scanning calorimetry. The excess heat capacity vs. temperature profiles were independent of protein concentration, but strongly temperature scanning rate-dependent. It has been shown that thermal denaturation of creatine kinase satisfies the previously proposed validity criteria for the two-state irreversible model [Kurganov et al., Biophys. Chem.70 (1997) 125]. The energy activation value has been calculated to be 461.0 +/- 0.7 kJ/mol.  相似文献   

15.
The heat-induced denaturation kinetics of two different sources of ovalbumin at pH 7 was studied by chromatography and differential scanning calorimetry. The kinetics was found to be independent of protein concentration and salt concentration, but was strongly dependent on temperature. For highly pure ovalbumin, the decrease in nondenatured native protein showed first-order dependence. The activation energy obtained with different techniques varied between 430 and 490 kJ*mole(-1). First-order behavior was studied in detail using differential scanning calorimetry. The calorimetric traces were irreversible and highly scan rate-dependent. The shape of the thermograms as well as the scan rate dependence can be explained by assuming that the thermal denaturation takes place according to a simplified kinetic process where N is the native state, D is denatured (or another final state) and k a first-order kinetic constant that changes with temperature, according to the Arrhenius equation. A kinetic model for the temperature-induced denaturation and aggregation of ovalbumin is presented. Commercially obtained ovalbumin was found to contain an intermediate-stable fraction (IS) of about 20% that was unable to form aggregates. The denaturation of this fraction did not satisfy first-order kinetics.  相似文献   

16.
The binding interactions between dimeric glutathione transferase from Schistosoma japonicum (Sj26GST) and bromosulfophthalein (BS) or 8-anilino-1-naphthalene sulfonate (ANS) were characterised by fluorescence spectroscopy and isothermal titration calorimetry (ITC). Both ligands inhibit the enzymatic activity of Sj26GST in a non-competitive form. A stoichiometry of 1 molecule of ligand per mole of dimeric enzyme was obtained for the binding of these ligands. The affinity of BS is higher (K(d)=3.2 microM) than that for ANS (K(d)=195 microM). The thermodynamic parameters obtained by calorimetric titrations are pH-independent in the range of 5.5 to 7.5. The interaction process is enthalpically driven at all the studied temperatures. This enthalpic contribution is larger for the ANS anion than for BS. The strongly favourable enthalpic contribution for the binding of ANS to Sj26GST is compensated by a negative entropy change, due to enthalpy-entropy compensation. DeltaG degrees remains almost invariant over the temperature range studied. The free energy change for the binding of BS to Sj26GST is also favoured by entropic contributions at temperatures below 32 degrees C, thus indicating a strong hydrophobic interaction. Heat capacity change obtained for BS (DeltaC(p) degrees =(-580.3+/-54.2) cal x K(-1) mol(-1)) is twofold larger (in absolute value) than for ANS (DeltaC(p) degrees =(-294.8+/-15.8) cal x K(-1) mol(-1)). Taking together the thermodynamic parameters obtained for these inhibitors, it can be argued that the possible hydrophobic interactions in the binding of these inhibitors to L-site must be accompanied by other interactions whose contribution is enthalpic. Therefore, the non-substrate binding site (designed as ligandin) on Sj26GST may not be fully hydrophobic.  相似文献   

17.
Protein stability is a subject of interest by many researchers. One of the common methods to increase the protein stability is using the osmolytes. Many studies and theories analyzed and explained osmolytic effect by equilibrium thermodynamic while most proteins undergo an irreversible denaturation. In current study we investigated the effect of sucrose as an osmolyte on the thermal denaturation of pea seedlings amine oxidase by the enzyme activity, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry. All experiments are in agreement that pea seedlings amine oxidase denaturation is controlled kinetically and its kinetic stability is increased in presence of sucrose. Differential scanning calorimetry experiments at different scanning rates showed that pea seedlings amine oxidase unfolding obeys two-state irreversible model. Fitting the differential scanning calorimetry data to two-state irreversible model showed that unfolding enthalpy and T *, temperature at which rate constant equals unit per minute, are increased while activation energy is not affected by increase in sucrose concentration. We concluded that osmolytes decrease the molecular oscillation of irreversible proteins which leads to decline in unfolding rate constant.  相似文献   

18.
Glutathione transferases are a family of enzymes that are traditionally known to contribute to the phase II class of detoxification reactions. However, a novel property of the Schistosoma japonicum glutathione transferase (Sj.GST26) involves its translocation from the external medium into a variety of different cell types. Here we explore the efficiency and mechanism of cell entry for this class of protein. Using flow cytometry and confocal microscopy, we have examined the internalisation of Sj.GST26 into live cells under a variety of conditions designed to shed light on the mode of cellular uptake. Our results show that Sj.GST26 can effectively enter cells through an energy-dependent event involving endocytosis. More specifically, Sj.GST26 was found to colocalise with transferrin within the cell indicating that the endocytosis process involves clathrin-coated pits. A comprehensive study into the cellular internalisation of proteins from other classes within the GST structural superfamily has also been conducted. These experiments suggest that the ‘GST-fold’ structural motif influences cellular uptake, which presents a novel glimpse into an unknown aspect of GST function.  相似文献   

19.
We consider in this work the analysis of the excess heat capacity C(p)(ex) versus temperature profiles in terms of a model of thermal protein denaturation involving one irreversible step. It is shown that the dependences of ln C(p)(ex) on 1 T (T is the absolute temperature) obtained at various temperature scanning rates have the same form. Several new methods for estimation of parameters of the Arrhenius equation are explored. These new methods are based on the fitting of theoretical equations to the experimental heat capacity data, as well as on the analysis of the dependence d(ln C (p)(ex)) d ( 1 T ) on 1 T . We have applied the proposed methods to calorimetric data corresponding to the irreversible thermal denaturation of Torpedo californica acetylcholinesterase, cellulase from Streptomyces halstedii JM8, and lentil lectin. Criteria of validity for the one-step irreversible denaturation model are discussed.  相似文献   

20.
The 26-kDa glutathione S-transferase from Schistosoma japonicum (Sj26GST), a helminth worm that causes schistosomiasis, catalyzes the conjugation of glutathione with toxic secondary products of membrane lipid peroxidation. Crystal structures of Sj26GST in complex with glutathione sulfonate (Sj26GSTSLF), S-hexyl glutathione (Sj26GSTHEX), and S-2-iodobenzyl glutathione (Sj26GSTIBZ) allow characterization of the electrophile binding site (H site) of Sj26GST. The S-hexyl and S-2-iodobenzyl moieties of these product analogs bind in a pocket defined by side-chains from the beta1-alpha1 loop (Tyr7, Trp8, Ile10, Gly12, Leu13), helix alpha4 (Arg103, Tyr104, Ser107, Tyr111), and the C-terminal coil (Gln204, Gly205, Trp206, Gln207). Changes in the Ser107 and Gln204 dihedral angles make the H site more hydrophobic in the Sj26GSTHEX complex relative to the ligand-free structure. These structures, together with docking studies, indicate a possible binding mode of Sj26GST to its physiologic substrates 4-hydroxynon-2-enal (4HNE), trans-non-2-enal (NE), and ethacrynic acid (EA). In this binding mode, hydrogen bonds of Tyr111 and Gln207 to the carbonyl oxygen atoms of 4HNE, NE, and EA could orient the substrates and enhance their electrophilicity to promote conjugation with glutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号