首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Garbitt RA  Bone KR  Parent LJ 《Journal of virology》2004,78(24):13534-13542
The Rous sarcoma virus Gag protein undergoes transient nuclear trafficking during virus assembly. Nuclear import is mediated by a nuclear targeting sequence within the MA domain. To gain insight into the role of nuclear transport in replication, we investigated whether addition of a "classical " nuclear localization signal (NLS) in Gag would affect virus assembly or infectivity. A bipartite NLS derived from nucleoplasmin was inserted into a region of the MA domain of Gag that is dispensable for budding and infectivity. Gag proteins bearing the nucleoplasmin NLS insertion displayed an assembly defect. Mutant virus particles (RC.V8.NLS) were not infectious, although they were indistinguishable from wild-type virions in Gag, Gag-Pol, Env, and genomic RNA incorporation and Gag protein processing. Unexpectedly, postinfection viral DNA synthesis was also normal, as similar amounts of two-long-terminal-repeat junction molecules were detected for RC.V8.NLS and wild type, suggesting that the replication block occurred after nuclear entry of proviral DNA. Phenotypically revertant viruses arose after continued passage in culture, and sequence analysis revealed that the nucleoplasmin NLS coding sequence was deleted from the gag gene. To determine whether the nuclear targeting activity of the nucleoplasmin sequence was responsible for the infectivity defect, two critical basic amino acids in the NLS were altered. This virus (RC.V8.KR/AA) had restored infectivity, and the MA.KR/AA protein showed reduced nuclear localization, comparable to the wild-type MA protein. These data demonstrate that addition of a second NLS, which might direct MA and/or Gag into the nucleus by an alternate import pathway, is not compatible with productive virus infection.  相似文献   

3.
Human immunodeficiency virus type 1 encapsidates two copies of viral genomic RNA in the form of a dimer. The dimerization process initiates via a 6-nucleotide palindrome that constitutes the loop of a viral RNA stem-loop structure (i.e., stem loop 1 [SL1], also termed the dimerization initiation site [DIS]) located within the 5' untranslated region of the viral genome. We have now shown that deletion of the entire DIS sequence virtually eliminated viral replication but that this impairment was overcome by four second-site mutations located within the matrix (MA), capsid (CA), p2, and nucleocapsid (NC) regions of Gag. Interestingly, defective viral RNA dimerization caused by the DeltaDIS deletion was not significantly corrected by these compensatory mutations, which did, however, allow the mutated viruses to package wild-type levels of this DIS-deleted viral RNA while excluding spliced viral RNA from encapsidation. Further studies demonstrated that the compensatory mutation T12I located within p2, termed MP2, sufficed to prevent spliced viral RNA from being packaged into the DeltaDIS virus. Consistently, the DeltaDIS-MP2 virus displayed significantly higher levels of infectiousness than did the DeltaDIS virus. The importance of position T12 in p2 was further demonstrated by the identification of four point mutations,T12D, T12E, T12G, and T12P, that resulted in encapsidation of spliced viral RNA at significant levels. Taken together, our data demonstrate that selective packaging of viral genomic RNA is influenced by the MP2 mutation and that this represents a major mechanism for rescue of viruses containing the DeltaDIS deletion.  相似文献   

4.
5.
The relationship between virion protein maturation and genomic RNA dimerization of human immunodeficiency virus type 1 (HIV-1) remains incompletely understood. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. Within the virion maturation process, the RNA dimer stabilization begins during the primary cleavage (p2-NC) of Pr55 Gag. However, the primary cleavage alone is not sufficient, and the ensuing cleavages are required for the completion of dimerization. From our observations, the increase of cleavage products may not put a threshold on the transition from fragile to stable dimeric RNA. Most of the RNA dimerization process did not require viral core formation, and particle morphology dynamics during viral maturation did not completely synchronize with the transition of dimeric RNA status. Although the endogenous virion RT activity was fully acquired at the initial step of maturation, the following process was necessary for viral DNA production in infected cell, suggesting the maturation of viral RNA/protein plays critical role for viral infectivity other than RT process.  相似文献   

6.
7.
The full-length human immunodeficiency virus type 1 (HIV-1) mRNA encodes two precursor polyproteins, Gag and GagProPol. An infrequent ribosomal frameshifting event allows these proteins to be synthesized from the same mRNA in a predetermined ratio of 20 Gag proteins for each GagProPol. The RNA frameshift signal consists of a slippery sequence and a hairpin stem-loop whose thermodynamic stability has been shown in in vitro translation systems to be critical to frameshifting efficiency. In this study we examined the frameshift region of HIV-1, investigating the effects of altering stem-loop stability in the context of the complete viral genome and assessing the role of the Gag spacer peptide p1 and the GagProPol transframe (TF) protein that are encoded in this region. By creating a series of frameshift region mutants that systematically altered the stability of the frameshift stem-loop and the protein sequences of the p1 spacer peptide and TF protein, we have demonstrated the importance of stem-loop thermodynamic stability in frameshifting efficiency and viral infectivity. Multiple changes to the amino acid sequence of p1 resulted in altered protein processing, reduced genomic RNA dimer stability, and abolished viral infectivity. The role of the two highly conserved proline residues in p1 (position 7 and 13) was also investigated. Replacement of the two proline residues by leucines resulted in mutants with altered protein processing and reduced genomic RNA dimer stability that were also noninfectious. The unique ability of proline to confer conformational constraints on a peptide suggests that the correct folding of p1 may be important for viral function.  相似文献   

8.
We have characterized the viral RNA conformation in wild-type, protease-inactive (PR-) and SL1-defective (DeltaDIS) human immunodeficiency virus type 1 (HIV-1), as a function of the age of the viruses, from newly released to grown-up (>or=24 h old). We report evidence for packaging HIV-1 genomic RNA (gRNA) in the form of monomers in PR- virions, viral RNA rearrangement (not maturation) within PR- HIV-1, protease-dependent formation of thermolabile dimeric viral RNAs, a new form of immature gRNA dimer at about 5 h post virion release, and slow-acting dimerization signals in SL1-defective viruses. The rates of gRNA dimer formation were >or=3-fold and >or=10-fold slower in DeltaDIS and PR- viruses than in wild-type, respectively. Thus, the DIS, i.e. the palindrome in the apical loop of SL1, is a dimerization initiation signal, but its role can be masked by one or several slow-acting dimerization site(s) when grown-up SL1-inactive virions are investigated. Grown-up PR- virions are not flawless models for immature virions because gRNA dimerization increases with the age of PR- virions, indicating that the PR- mutation does not "freeze" gRNA conformation in a nascent primordial state. Our study is the first on gRNA conformation in newly released mutant or primate retroviruses. It shows for the first time that the packaged retroviral gRNA matures in more than one step, and that formation of immature dimeric viral RNA requires viral protein maturation. The monomeric viral RNAs isolated from budding HIV-1, as modeled by newly released PR- virions, may be seen as dimers that are much more fragile than thermolabile dimers.  相似文献   

9.
All retroviruses contain, in the nucleocapsid domain of the Gag protein, one or two copies of the sequence Cys-X2-Cys-X4-His-X4-Cys. We have generated a series of mutants in the two copies of this motif present in human immunodeficiency virus type 1. These mutants encoded virus particles that were apparently composed of the normal complement of viral proteins but contained only 2 to 20% of the normal level of genomic RNA. No infectivity could be detected in the mutant particles, while 10(5) infectious U were present in an equivalent amount of wild-type particles. Thus, the mutants have another defect in addition to the inefficiency with which they encapsidate genomic RNA. Our results show that both copies of the motif are required for normal RNA packaging and for infectivity. Mutants of this type may have important applications, including nonhazardous materials for research, immunogens in vaccine and immunotherapy studies, and diagnostic reagents.  相似文献   

10.
The subcellular location at which genomic RNA is packaged by Gag proteins during retrovirus assembly remains unknown. Since the membrane-binding (M) domain is most critical for targeting Gag to the plasma membrane, changes to this determinant might alter the path taken through the cell and reduce the efficiency of genome packaging. In this report, a Rous sarcoma virus (RSV) mutant having two acidic-to-basic substitutions in the M domain is described. This mutant, designated Super M, produced particles much faster than the wild type, but the mutant virions were noninfectious and contained only 1/10 the amount of genomic RNA found in wild-type particles. To identify the cause(s) of these defects, we considered data that suggest that RSV Gag traffics through the nucleus to package the viral genome. Although inhibition of the CRM-1 pathway of nuclear export caused the accumulation of wild-type Gag in the nucleus, nuclear accumulation did not occur with Super M. The importance of the nucleocapsid (NC) domain in membrane targeting was also determined, and, importantly, deletion of the NC sequence prevented plasma membrane localization by wild-type Gag but not by Super M Gag. Based on these results, we reasoned that the enhanced membrane-targeting properties of Super M inhibit genome packaging. Consistent with this interpretation, substitutions that reestablished the wild-type number of basic and acidic residues in the Super M Gag M domain reduced the budding efficiency and restored genome packaging and infectivity. Therefore, these data suggest that Gag targeting and genome packaging are normally linked to ensure that RSV particles contain viral RNA.  相似文献   

11.
12.
13.
14.
We have identified mutations in the human immunodeficiency virus type 1 (HIV-1) matrix protein (MA) which block infectivity of virions pseudotyped with murine leukemia virus (MuLV) envelope (Env) glycoproteins without affecting infectivity conferred by HIV-1 Env or vesicular stomatitis virus G glycoproteins. This inhibition is very potent and displays a strong transdominant effect; infectivity is reduced more than 100-fold when wild-type and mutant molecular clones are cotransfected at a 1:1 ratio. This phenomenon is observed with both ecotropic and amphotropic MuLV Env. The MA mutations do not affect the incorporation of MuLV Env into virions. We demonstrate that in HIV-1 virions pseudotyped with MuLV Env, the HIV-1 protease (PR) efficiently catalyzes the cleavage of the p15(E) transmembrane (TM) protein to p12(E). Immunoprecipitation analysis of pseudotyped virions reveals that the mutant MA blocks this HIV-1 PR-mediated cleavage of MuLV TM. Furthermore, the transdominant inhibition exerted by the mutant MA on wild-type infectivity correlates with the relative level of p15(E) cleavage. Consistent with the hypothesis that abrogation of infectivity imposed by the mutant MA is due to inhibition of p15(E) cleavage, mutant virions are significantly more infectious when pseudotyped with a truncated p12(E) form of MuLV Env. These results indicate that HIV-1 Gag sequences can influence the viral PR-mediated processing of the MuLV TM Env protein p15(E). These findings have implications for the development of HIV-1-based retroviral vectors pseudotyped with MuLV Env, since p15(E) cleavage is essential for activating membrane fusion and virus infectivity.  相似文献   

15.
Sakuragi J 《Uirusu》2011,61(1):91-98
In general, the retrovirus particles become infectious on post-budding with cleavages of structural protein Gag by viral protease. Protease defective mutants bud particles normally, but the particles are non-infectious and called donuts-like particle because of their morphology. The viral genomes inside the donuts-like particles form very fragile dimer, which are far different from those in wild-type particles. The ordered particle maturation process is essential for infectivity of virus, but its mechanism largely remains unclear. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. As results, we found that these process progressed synchronously, but each transition point did not coincide completely. The mutual relationship between viral protein and RNA maturation is discussed for a further understanding of the retroviral life cycle.  相似文献   

16.
Qiu Z  Yao J  Cao H  Gillam S 《Journal of virology》2000,74(14):6637-6642
Rubella virus (RV) virions contain three structural proteins, a capsid protein that interacts with viral genomic RNA to form a nucleocapsid and two membrane glycoproteins, E2 and E1. We found that substitution of either an aspartic acid residue at Gly93 (G93D) or a glycine residue at Pro104 (P104G) in the internal hydrophobic domain of E1 affected virus infectivity but not virus assembly. Viruses carrying G93D and P104G mutations had impaired infectivity, reduced 1,000-fold and 10-fold, respectively. A revertant was isolated from the G93D mutant. Sequencing analysis showed that the substituted aspartic acid residue in G93D mutant had reverted to the original glycine residue, suggesting the involvement of Gly93 in membrane fusion during viral entry.  相似文献   

17.
A series of short insertion mutations was introduced into the poliovirus gene for 3Dpol at a number of different locations. When substituted for wild-type sequences in a full-length, infectious cDNA and tested for infectivity, all 3D mutants were nonviable. The mutant cDNAs were introduced into a bacterial plasmid designed to direct the expression of poliovirus 3CD, a viral protein composed of contiguous protease and RNA polymerase sequences. Bacteria transformed with these plasmids all expressed similar amounts of 3CD, and all mutant proteins cleaved themselves to generate wild-type 3Cpro and mutant 3Dpol polypeptides with approximately the same efficiency as wild-type 3CD. The released mutant 3Dpol proteins were all defective in RNA-dependent RNA polymerase activity in vitro. Uncleaved 3CD is a protease required for processing the viral capsid protein precursor, P1. In an in vitro assay of P1 cleavage activity, some of the mutant 3CD proteins expressed in Escherichia coli showed normal activity, while others were clearly inactive. Thus, alterations in the sequence and/or folding of different regions of the 3D protein have differential effects on its various activities.  相似文献   

18.
19.
20.
The matrix domain (MA) is important for targeting of human immunodeficiency virus type 1 Gag assembly to the plasma membrane, envelope incorporation into virions, preintegration complex import into the nucleus, and nuclear export of viral RNA. Myristylation and phosphorylation are key regulatory events for MA function. Previous studies have indicated that MA phosphorylation at serine (Ser) residues is important for viral replication. This study defines the molecular mechanisms of virus particle assembly and infectivity through a detailed study of the role of MA serine phosphorylation. We show that the combined mutation of Ser residues at positions 9, 67, 72, and 77 impairs viral infectivity in dividing and nondividing cells, although the assembly of these Ser mutant viruses is comparable to that of wild-type virus. This defect can be rescued by pseudotyping these mutant viruses with vesicular stomatitis virus G protein, suggesting that these serine residues are critical in an early postentry step of viral infection. The phosphorylation level of MA in defective mutant viruses was severely reduced compared to that of the wild type, suggesting that phosphorylation of Ser-9, -67, -72, and -77 is important for an early postentry step during virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号