首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Malaria is a serious health problem in developing countries. With the complete sequencing of the genomes of the parasite and of the mosquito vector, malaria research has entered the post-genome era. In this report we summarize the results and new research avenues presented at a recent meeting held with the aim of developing interdisciplinary approaches to combat this disease.  相似文献   

2.
Bioinformatics and Genomics are closely related disciplines that hold great promises for the advancement of research and development in complex biomedical systems, as well as public health, drug design, comparative genomics, personalized medicine and so on. Research and development in these two important areas are impacting the science and technology.High throughput sequencing and molecular imaging technologies marked the beginning of a new era for modern translational medicine and personalized healthcare. The impact of having the human sequence and personalized digital images in hand has also created tremendous demands of developing powerful supercomputing, statistical learning and artificial intelligence approaches to handle the massive bioinformatics and personalized healthcare data, which will obviously have a profound effect on how biomedical research will be conducted toward the improvement of human health and prolonging of human life in the future. The International Society of Intelligent Biological Medicine (http://www.isibm.org) and its official journals, the International Journal of Functional Informatics and Personalized Medicine (http://www.inderscience.com/ijfipm) and the International Journal of Computational Biology and Drug Design (http://www.inderscience.com/ijcbdd) in collaboration with International Conference on Bioinformatics and Computational Biology (Biocomp), touch tomorrow's bioinformatics and personalized medicine throughout today's efforts in promoting the research, education and awareness of the upcoming integrated inter/multidisciplinary field. The 2007 international conference on Bioinformatics and Computational Biology (BIOCOMP07) was held in Las Vegas, the United States of American on June 25-28, 2007. The conference attracted over 400 papers, covering broad research areas in the genomics, biomedicine and bioinformatics. The Biocomp 2007 provides a common platform for the cross fertilization of ideas, and to help shape knowledge and scientific achievements by bridging these two very important disciplines into an interactive and attractive forum. Keeping this objective in mind, Biocomp 2007 aims to promote interdisciplinary and multidisciplinary education and research. 25 high quality peer-reviewed papers were selected from 400+ submissions for this supplementary issue of BMC Genomics. Those papers contributed to a wide-range of important research fields including gene expression data analysis and applications, high-throughput genome mapping, sequence analysis, gene regulation, protein structure prediction, disease prediction by machine learning techniques, systems biology, database and biological software development. We always encourage participants submitting proposals for genomics sessions, special interest research sessions, workshops and tutorials to Professor Hamid R. Arabnia (hra@cs.uga.edu) in order to ensure that Biocomp continuously plays the leadership role in promoting inter/multidisciplinary research and education in the fields. Biocomp received top conference ranking with a high score of 0.95/1.00. Biocomp is academically co-sponsored by the International Society of Intelligent Biological Medicine and the Research Laboratories and Centers of Harvard University--Massachusetts Institute of Technology, Indiana University--Purdue University, Georgia Tech--Emory University, UIUC, UCLA, Columbia University, University of Texas at Austin and University of Iowa etc. Biocomp--Worldcomp brings leading scientists together across the nation and all over the world and aims to promote synergistic components such as keynote lectures, special interest sessions, workshops and tutorials in response to the advances of cutting-edge research.  相似文献   

3.
新世纪中推动生物科学发展的“Bio-X”   总被引:5,自引:0,他引:5  
近二年国际上正掀起建立以生物科学为中心的交叉学科研究中心或研究所等实体的热潮。其中最引入注目的是美国斯坦福大学以诺贝尔物理学奖获得者朱棣文教授等人组建的“Bio-X”研究中心。Bio-X中的Bio为生物学,X泛指物理学、化学、工程学、医学等其它学科,在新世纪到来之时,生物科学中有不少迅速发展的领域迫切需要多学科交叉共同研究和参与,特别是:后基因组、基于同步辐射的结构生物学、单分子测量、纳米技术、脑科学、生物医学工程等。  相似文献   

4.
The need for interdisciplinary collaboration is arising as a result of accelerating advances in basic science, including massive research and development funding by both government and industry, which has spurred the so-called "nanotechnology revolution" and developments at the intersection of the life and physical sciences, increasing emphasis by federal research funding agencies on interdisciplinary and inter-institutional research and by market influences. A number of barriers presently limit the interaction between academics and industry, including the typically very time-consuming and slow pace of technology transfer, which is compounded in the case of interdisciplinary and inter-institutional licensing, as well as the natural, and understandable, antipathies that exist between academia and industry as a result of their differing missions and approaches to scientific discovery. Moreover, if mechanisms are not in place at the outset of an inter-university collaboration, then the transition of inventions to clinical applications can be fraught with additional complexities and barriers. Policies suggested by the National Nanotechnology Initiative offer a number of ideas for overcoming barriers to multidisciplinary and inter-institutional research and illustrate some of the ways in which academia can structure partnerships with industry that will not only provide needed funding for multidisciplinary and inter-institutional biomedical research in an era of diminishing federal resources, but may permit academia, on the one hand, and industry, on the other, to benefit from the strengths provided by the other without compromising either academia's or industry's basic missions.  相似文献   

5.
Matthews KR  Calhoun KM  Lo N  Ho V 《PloS one》2011,6(12):e29738
In the past 30 years, the average age of biomedical researchers has steadily increased. The average age of an investigator at the National Institutes of Health (NIH) rose from 39 to 51 between 1980 and 2008. The aging of the biomedical workforce was even more apparent when looking at first-time NIH grantees. The average age of a new investigator was 42 in 2008, compared to 36 in 1980. To determine if the rising barriers at NIH for entry in biomedical research might impact innovative ideas and research, we analyzed the research and publications of Nobel Prize winners from 1980 to 2010 to assess the age at which their pioneering research occurred. We established that in the 30-year period, 96 scientists won the Nobel Prize in medicine or chemistry for work related to biomedicine, and that their groundbreaking research was conducted at an average age of 41-one year younger than the average age of a new investigator at NIH. Furthermore, 78% of the Nobel Prize winners conducted their research before the age of 51, the average age of an NIH principal investigator. This suggested that limited access to NIH might inhibit research potential and novel projects, and could impact biomedicine and the next generation scientists in the United States.  相似文献   

6.
Chemical biology continues to find its way into biomedical research in new and exciting ways. The recent American Society of Cell Biology meeting showed how this discipline is making an impact in areas such as cell biology.  相似文献   

7.
98Emphasis on the individual investigator has fostered discovery for centuries, yet it is now recognized that the complexity of problems in the biomedical sciences and engineering requires collaborative efforts from individuals having diverse training and expertise. Various approaches can facilitate interdisciplinary interactions, but we submit that there is a critical need for a new educational paradigm for the way that we train biomedical engineers, life scientists, and mathematicians. We cannot continue to train graduate students in isolation within single disciplines, nor can we ask any one individual to learn all the essentials of biology, engineering, and mathematics. We must transform how students are trained and incorporate how real-world research and development are done-in diverse, interdisciplinary teams. Our fundamental vision is to create an innovative paradigm for graduate research and training that yields a new generation of biomedical engineers, life scientists, and mathematicians that is more diverse and that embraces and actively pursues a truly interdisciplinary, team-based approach to research based on a known benefit and mutual respect. In this paper, we describe our attempt to accomplish this via focused training in biomechanics, biomedical optics, mathematics, mechanobiology, and physiology. The overall approach is applicable, however, to most areas of biomedical research.  相似文献   

8.
Chemical biology is an interdisciplinary field that is undergoing rapid expansion around the globe. Recently, the Japanese Society for Chemical Biology sponsored its inaugural scientific meeting to discuss research at the interface of chemistry and biology.  相似文献   

9.
ABSTRACT: In the 21st century, systems-wide analyses of biological processes are getting more and more realistic. Especially for the in depth analysis of signal transduction pathways and networks, various approaches of systems biology are now successfully used. The EU FP7 large integrated project SYBILLA (Systems Biology of T-cell Activation in Health and Disease) coordinates such an endeavor. By using a combination of experimental data sets and computational modelling, the consortium strives for gaining a detailed and mechanistic understanding of signal transduction processes that govern T-cell activation. In order to foster the interaction between systems biologists and experimentally working groups, SYBILLA co-organized the 15th meeting "Signal Transduction: Receptors, Mediators and Genes" together with the Signal Transduction Society (STS). Thus, the annual STS conference, held from November 7 to 9, 2011 in Weimar, Germany, provided an interdisciplinary forum for research on signal transduction with a major focus on systems biology addressing signalling events in T-cells. Here we report on a selection of ongoing projects of SYBILLA and how they were discussed at this interdisciplinary conference.  相似文献   

10.
The Human Genome Project (HGP) is regarded by many as one of the major scientific achievements in recent science history, a large-scale endeavour that is changing the way in which biomedical research is done and expected, moreover, to yield considerable benefit for society. Thus, since the completion of the human genome sequencing effort, a debate has emerged over the question whether this effort merits to be awarded a Nobel Prize and if so, who should be the one(s) to receive it, as (according to current procedures) no more than three individuals can be selected. In this article, the HGP is taken as a case study to consider the ethical question to what extent it is still possible, in an era of big science, of large-scale consortia and global team work, to acknowledge and reward individual contributions to important breakthroughs in biomedical fields. Is it still viable to single out individuals for their decisive contributions in order to reward them in a fair and convincing way? Whereas the concept of the Nobel prize as such seems to reflect an archetypical view of scientists as solitary researchers who, at a certain point in their careers, make their one decisive discovery, this vision has proven to be problematic from the very outset. Already during the first decade of the Nobel era, Ivan Pavlov was denied the Prize several times before finally receiving it, on the basis of the argument that he had been active as a research manager (a designer and supervisor of research projects) rather than as a researcher himself. The question then is whether, in the case of the HGP, a research effort that involved the contributions of hundreds or even thousands of researchers worldwide, it is still possible to “individualise” the Prize? The “HGP Nobel Prize problem” is regarded as an exemplary issue in current research ethics, highlighting a number of quandaries and trends involved in contemporary life science research practices more broadly.  相似文献   

11.
The American Society for Cell Biology is targeting the first week of October 2012 (the week before Nobel Prize winners are announced) to launch the We Are Research initiative. The goal of this initiative is to mobilize practicing junior and senior scientists, including graduate students, postdocs, and other lab members, to make contact with their elected officials and neighbors and explain to them why Federal support and investment in biomedical research is vital to the health and economic welfare of the United States. This initiative is designed to illustrate how important people are to scientific research and to supply our representatives with reliable and accurate information in the form of letters, emails, telephone calls, and personal visits.  相似文献   

12.
Interest in cross-disciplinary research knowledge interchange runs high. Review processes at funding agencies, such as the U.S. National Science Foundation, consider plans to disseminate research across disciplinary bounds. Publication in the leading multidisciplinary journals, Nature and Science, may signify the epitome of successful interdisciplinary integration of research knowledge and cross-disciplinary dissemination of findings. But how interdisciplinary are they? The journals are multidisciplinary, but do the individual articles themselves draw upon multiple fields of knowledge and does their influence span disciplines? This research compares articles in three fields (Cell Biology, Physical Chemistry, and Cognitive Science) published in a leading disciplinary journal in each field to those published in Nature and Science. We find comparable degrees of interdisciplinary integration and only modest differences in cross-disciplinary diffusion. That said, though the rate of out-of-field diffusion might be comparable, the sheer reach of Nature and Science, indicated by their potent Journal Impact Factors, means that the diffusion of knowledge therein can far exceed that of leading disciplinary journals in some fields (such as Physical Chemistry and Cognitive Science in our samples).  相似文献   

13.
At a recent Keystone Symposium on 'Developmental Biology and Tissue Engineering', new findings in areas ranging from stem cell differentiation, embryonic pattern formation and organ regeneration to engineered cell microenvironments, synthetic biomaterials and artificial tissue fabrication were described. Although these new advances were exciting, this symposium clarified that biologists and engineers often view the challenge of tissue formation from different, and sometimes conflicting, perspectives. These dichotomies raise questions regarding the definition of regenerative medicine, but offer the promise of exciting new interdisciplinary approaches to tissue and organ regeneration, if effective alliances can be established.  相似文献   

14.
15.
The Nobel Assembly at Karolinska Institute has decided to award The Nobel Prize in Physiology or Medicine 2009 jointly to Elizabeth H. Blackburn, Carol W. Greider and Jack W. Szostak for the discovery of "how chromosomes are protected by telomeres and the enzyme telomerase". This discovery had major impacts within the scientific community and led to intense research in this field. All the studies performed are now the bases for future investigations and stimulate the development of potential new therapies.  相似文献   

16.
The Yale Systems Biology Institute (YSBI) sponsored its first symposium at the university's West Campus in October 2010. The symposium served to provide Yale's scientific community with a glimpse into the wide range of research at the forefront of this interdisciplinary field. YSBI was conceived less than a year ago, and the event was the perfect forum for its debut, both at Yale and in the U.S. scientific community. This article includes a brief overview of the different topics presented at the symposium, followed by a discussion of the advantages and challenges of practical application of systems biology.  相似文献   

17.
System-level approaches in biology are not new but foundations of “Systems Biology” are achieved only now at the beginning of the 21st century [Kitano, H., 2001. Foundations of Systems Biology. MIT Press, Cambridge, MA]. The renewed interest for a system-level approach is linked to the progress in collecting experimental data and to the limits of the “reductionist” approach. System-level understanding of native biological and pathological systems is needed to provide potential therapeutic targets. Examples of interdisciplinary approach in Systems Biology are described in U.S., Japan and Europe. Robustness in biology, metabolic engineering and idiotypic networks are discussed in the framework of Systems Biology.  相似文献   

18.
The recent Keystone Symposium on Evolutionary Developmental Biology at Tahoe City in February 2011 provided an opportunity to take stock of where the past three decades have brought this interdisciplinary field. It revealed maturation on several fronts, including increased experimental rigor, the softening of dichotomies that were crucial to its founding and growth, and its growing relevance to both basic and biomedical biology.  相似文献   

19.
Biology is now entering the new era of systems biology and exerting a growing influence on the future development of various disciplines within life sciences. In early classical and molecular periods of Biology, the theoretical frames of classical and molecular quantitative genetics have been systematically established, respectively. With the new advent of systems biology, there is occurring a paradigm shift in the field of quantitative genetics. Where and how the quantitative genetics would develop after having undergone its classical and molecular periods? This is a difficult question to answer exactly. In this perspective article, the major effort was made to discuss the possible development of quantitative genetics in the systems biology era, and for which there is a high potentiality to develop towards "systems quantitative genetics". In our opinion, the systems quantitative genetics can be defined as a new discipline to address the generalized genetic laws of bioalleles controlling the heritable phenotypes of complex traits following a new dynamic network model. Other issues from quantitative genetic perspective relating to the genetical genomics, the updates of network model, and the future research prospects were also discussed.  相似文献   

20.
Molecular cell biology is now facing the challenges of the post-genomic era. In this regard, the recently established Max-Planck-Institute of Molecular Cell Biology and Genetics in Dresden, Germany, provides interesting perspectives. Its atypical structure and the unique mixture of research topics and model systems give this Max-Planck-Institute the necessary versatility and flexibility for this new phase of biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号