首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 56,000-Da peptide with inherent protein phosphatase activity was isolated from the postribosomal supernatant fraction of rabbit reticulocytes. The peptide appears to form complexes with other proteins that are present in crude fractions. It exhibits atypical retention on steric exclusion columns during high performance liquid chromatography, an unusual characteristic that facilitated its isolation. The protein phosphatase activity of the 56,000-Da peptide is dependent on Mn2+ ions, but is not activated by either the FA, ATP/Mg2+ protein phosphatase activator system or by proteolysis. The protein phosphatase activity of the peptide is increased 3-fold or more by the antigen peptides described in the accompanying paper (Fullilove, S., Wollny, E., Stearns, G., Chen, S.C., Kramer, G., and Hardesty, B. (1984) J. Biol. Chem. 259, 2493-2500).  相似文献   

2.
3.
Previous studies indicated that the species of type 1 and type 2 protein phosphatases (PP-1, PP-2) in rabbit reticulocytes are similar to those of rabbit skeletal muscle and rabbit liver. Reticulocyte PP-1 was found to be selectively inhibited by the heat stable protein phosphatase inhibitor-2 (I-2) from rabbit skeletal muscle. Of interest was the observation that muscle I-2 appeared to regulate protein synthesis in reticulocyte lysates by inhibiting an eIF-2 alpha phosphatase with type 1 properties. In this study we have characterized reticulocyte inhibitor-2 (I-2) and find that its properties are similar to those of skeletal muscle I-2. (i) Both I-2 species are stable to boiling and to acid treatment, and have similar chromatographic profiles on DEAE-cellulose and on Blue Sepharose CL-6B. (ii) The two I-2 species migrate electrophoretically as 26-28,000 dalton polypeptides in SDS-acrylamide gels. (iii) Both skeletal muscle I-2 and reticulocyte I-2 selectively inhibit isolated reticulocyte PP-1 and endogenous PP-1 in the lysate. (iv) Reticulocyte I-2 co-chromatographs with PP-1 on DEAE-cellulose, and over 90% of lysate I-2 can be isolated from this partially purified PP-1. (v) Both inhibitor-2 species are active in the unphosphorylated state, but upon addition to lysates, both are phosphorylated by endogenous cAMP-independent protein kinase(s). In addition a preliminary analysis using a polyclonal antibody against muscle inhibitor-1 confirmed biochemical analyses which indicate that lysates are deficient in inhibitor-1.  相似文献   

4.
A factor that catalytically promotes the codon-directed, GTP-independent binding of tRNA to 40 S ribosomal subunits has been isolated from the postribosomal supernatant and the ribosomal wash of rabbit reticulocytes. The factor is a heat labile, sulfhydryl reagent-sensitive protein of a molecular weight of approximately 50,000. It consists of two non-identical subunits of Mr equals approximately 30,000 and 20,000. Its basic character has been confirmed by the high ratio of basic amino acids to nonamidic aspartic and glutamic acid present in the purified protein. Formation of a factor promoted 40 S-poly(U)-phenylalanyl-tRNA initiation complex causes a shift in the Mg-2+ concentration optimum for polyphenylalanine synthesis from 8 mM to 4mM.  相似文献   

5.
Rabbit muscle phosphorylase phosphatase has been isolated in different laboratories as an inactive complex of Mr = 70,000, composed of separate catalytic (Mr = 38,000) and regulatory (Mr = 31,000) proteins. The regulatory protein is identical to one of two heatstable inhibitors called inhibitor-2 (I2). Antiserum raised in sheep against I2 by repeated immunization potently blocked inhibitory activity, whereas preimmune serum did not. Immunoglobulins which blocked inhibitory activity were purified by affinity chromatography with I2 as the immobilized ligand. Using a "Western" immunoblotting procedure, as little as 1-5 ng of pure I2, obtained by electroelution of the Mr = 31,000 band of I2 from a polyacrylamide gel segment, were detected. Immunoblotting of the immunogen revealed only a band at Mr = 31,000, indicating the absence of contaminating antigenic proteins. When extracts of skeletal muscle and other rabbit tissues were denatured directly in dodecyl sulfate for immunoblotting the most intensely stained band was present at Mr = 60,000, rather than at Mr = 31,000 as expected. A small amount of I2 and other bands were detected, in particular at Mr = 36,000 and 25,000. Subsequent to heat treatment of the tissue extracts, there was an enrichment of I2 content relative to the Mr = 60,000 band. The results indicate the existence of a Mr = 60,000 protein related to I2. Activation of phosphorylase phosphatase in a muscle extract by treatment with Co2+ plus trypsin exactly coincided with digestion of the Mr = 60,000 immunoreactive protein. Available data indicate that this protein may function as a regulatory subunit of phosphorylase phosphatase.  相似文献   

6.
7.
An antibody to a highly purified preparation of the translational repressor (HCR), which mediates hemin control of globin synthesis in rabbit reticulocyte lysates, has been obtained from the serum of immunized guinea pigs. Preincubation with immune but not normal guinea pig IgG leads to neutralization of the inhibitory activity of either crude or highly purified HCR. Excess prorepressor, the precursor of HCR, has essentially no competitive effect on the inactivation of HCR by immune IgG, suggesting that the antigenic determinants responsible for neutralization of HCR by antibody are buried within the prorepressor molecule. These antigenic determinants become exposed at an early stage in the formation of HCR, since hemin-sensitive HCR, formed within 20 min, is inactivated by immune IgG. The antibody also neutralizes the inhibitory activity generated by a short incubation of partially purified prorepressor with N-ethylmaleimide, indicating that the activity formed is the same as natural HCR.  相似文献   

8.
9.
The catalytic subunit of cyclic AMP-dependent protein kinases from rabbit reticulocytes has been purified to near homogeneity. It has a molecular weight of 43,000 as judged from gel filtration and by polyacrylamide gel electrophoresis in the presence of sodium dodecyi sulfate and appears to be similar in physical properties and substrate specificity to the comparable enzyme isolated from muscle or liver. The enzyme phosphorylates histones, a protein of 40 S ribosomal subunits from reticulocytes and from Artemia salina, and the low molecular weight heat-stable phosphatase inhibitor (G. A. Nimmo and P. Cohen, 1978, Eur. J, Biochem.87, 341–351). No evidence has been obtained for a direct or indirect role of this enzyme in the regulation of protein synthesis.  相似文献   

10.
11.
A group A streptococcal strain rich in Fc receptors was selected by an immunoblotting technique and used as the source for isolation of a functionally active Fc receptor. A variety of extraction techniques were compared including (1) heat extraction at neutral, acid or alkaline pH, (2) treatment with the enzymes mutanolysin, hyaluronidase, trypsin, papain or phage lysin, or (3) autoclaving or heating in the presence of sodium dodecyl sulfate. The most homogeneous receptor was recovered following heat extraction and contained two molecular weight forms. The major form had a molecular weight of 56 000 daltons and the minor form had a molecular weight of 38 000 daltons. These two proteins could be isolated without loss of activity by binding to and elution from a column of immobilized human IgG. An antibody prepared against a single form of the affinity purified receptor demonstrated reactivity with both molecular weight forms of the heat extracted receptor. The group A receptor was found to be both antigenically and physicochemically distinct from either the type I receptor found on the majority of Staphylococcus aureus strains or the type III Fc receptors found on the majority of group C streptococcal strains.  相似文献   

12.
Ribonucleoprotein particles with sedimentation coefficient of 12-14S were isolated from ribosome-free extracts of rabbit reticulocytes. The particles contain one RNA molecule, whose relative electrophoretic mobility and the 3'-terminal nucleotide sequence correspond to those of the 7SL RNA from mammalian cells and one type of polypeptide chains with a molecular weight of 80,000-85,000 Da. The nucleic component of these particles is identical to that of SRP from dog pancreatic cells but differs from the latter by the protein component.  相似文献   

13.
14.
A high molecular weight protein phosphatase (phosphatase H-II) was isolated from rabbit skeletal muscle. The enzyme had a Mr = 260,000 as determined by gel filtration and possessed two types of subunit, of Mr = 70,000 and 35,000, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On ethanol treatment, the enzyme was dissociated to an active species of Mr = 35,000. The purified phosphatase dephosphorylated lysine-rich histone, phosphorylase a, glycogen synthase, and phosphorylase kinase. It dephosphorylated both the alpha- and beta-subunit phosphates of phosphorylase kinase, with a preference for the dephosphorylation of the alpha-subunit phosphate over the beta-subunit phosphate of phosphorylase kinase. The enzyme also dephosphorylated p-nitrophenyl phosphate at alkaline pH. Phosphatase H-II is distinct from the major phosphorylase phosphatase activities in the muscle extracts. Its enzymatic properties closely resemble that of a Mr = 33,500 protein phosphatase (protein phosphatase C-II) isolated from the same tissue. However, despite their similarity of enzymatic properties, the Mr = 35,000 subunit of phosphatase H-II is physically different from phosphatase C-II as revealed by their different sizes on sodium dodecyl sulfate-gel electrophoresis. On trypsin treatment of the enzyme, this subunit is converted to a form which is a similar size to phosphatase C-II.  相似文献   

15.
Initiation factor IF-E2 was isolated from rabbit reticulocytes and purified 120-fold to near homogeneity by ammonium sulfate fractionation, column chromatography on DEAE-cellulose and phosphocellulose, and, when suitable, by sucrose density gradient centrifugation. The factor is a complex protein containing three nonidentical polypeptides of molecular weight 57,000, 52,000, and 36,000. It behaves as a complex throughout its purification and during polyacrylamide gel electrophoresis in nondenaturing buffer but its thress components are readily separated by electrophoresis in denaturing buffers. None of its components corresponds to any of the polypeptides of the other initiation factors or to any proteins of ribosomes washed in buffers containing a high salf concentration. A stoichiometric ratio of 1:1:1 was determined for the three polypeptides; based on the assumption of one copy each per complex, the calculated factor molecular weight is 145,000, a value in agreement with the measured value of 160,000. Initiation factor IF-E2 was radioactively labeled in vitro by reductive alkylation or by phosphorylation with a protein kinase also isolated from rabbit reticulocytes. Neither procedure causes a measurable change in the ability of the factor to form a ternary complex with GTP and the initiator methionyl-tRNA. 5'-Guanylyl-methylenediphosphonate may substitute for GTP, but only at relatively high concentrations. The binding of labeled initiation factor IF-E2 and methionyl-tRNA to the 40 S ribosomal subunit was studied by sucrose density gradient centrifugation. Appreciable binding of the factor is seen only when all three components of the ternary complex are included in the reaction mixture. The binding of either the factor or methionyl-tRNA was not stimulated by the addition of globin messenger RNA and initiation factor IF-E3. It was shown that all three polypeptide components of initiation factor IF-E2 are bound to these nascent initiation complexes.  相似文献   

16.
A cDNA clone encoding a second type-2A protein phosphatase catalytic subunit (2A beta) was isolated from a rabbit skeletal muscle cDNA library constructed in lambda gt10. The deduced protein sequence (309 residues, 35.59 kDa) was 97% identical to that of phosphatase 2A alpha (309 residues, 35.58 kDa). At the nucleotide level, the two clones showed only 82% identity in the coding region. The results indicate the presence of at least two isoforms of protein phosphatase 2A in skeletal muscle.  相似文献   

17.
Endogenous dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in pea (Pisum sativum, L. cv Progress 9) thylakoids drives the state 2 to state 1 transition; the responsible enzyme is a thylakoid-bound, fluoride-sensitive phosphatase with a pH optimum of 8.0 (Bennett J [1980] Eur J Biochem 104: 85-89). An enzyme with these characteristics was isolated from well-washed thylakoids. Its molecular mass was estimated at 51.5 kD, and this monomer was catalytically active, although the activity was labile. The active site could be labeled with orthophosphate at pH 5.0. High levels of alkaline phosphatase activity were obtained with the assay substrate, 4-methylumbelliferyl phosphate (350 micromoles per minute per milligram purified enzyme). The isolated enzyme functioned as a phosphoprotein phosphatase toward phosphorylated histone III-S and phosphorylated, photosystem II-enriched particles from pea, with typical activities in the range of 200 to 600 picomoles per minute per milligram enzyme. These activities all had a pH optimum of 8.0 and were fluoride sensitive. The enzyme required magnesium ion for maximal activity but was not dependent on this ion. Evidence supporting a putative function for this phosphatase in dephosphorylation of thylakoid proteins came from the inhibition of this process by a polyclonal antibody preparation raised against the partially purified enzyme.  相似文献   

18.
PTPA, a specific phosphotyrosyl phosphatase activator of the PCSH2 and PCSL protein phosphatases, was purified up to apparent homogeneity from Xenopus laevis ovaries and rabbit skeletal muscle and highly purified from dog liver. PTPA appears as a 40-kDa protein in gel filtration, as well as in sucrose gradient centrifugation, and as a 37-39-kDa protein doublet in SDS-PAGE. Its estimated cellular concentration of 0.75 microM in oocytes or 0.25 microM in rabbit skeletal muscle is suggestive of an important role in the regulation of the cellular PTPase activity. The PTPase activation reaction of the PCSL phosphatase is time-dependent, ATP and Mg2+ being essential cofactors [A50(ATP) = 0.12 mM in the presence of 5 mM MgCl2]. With RCM lysozyme as substrate, the specific activity of the PTPA-activated PCSL phosphatase is 700 nmol of Pi/(min.mg). The pH optimum of the PTPase shifts from 8.5-9 in basal conditions to a neutral pH (7-7.5), and the A50 for the essential metal ion Mg2+ is decreased (3 mM). The activation is rapidly reversed in the presence of the substrate, and more slowly after removal of ATP.Mg. The PTPA-activated PCSL phosphatase represents a major PTPase activity in the cytosol of X. laevis oocytes (at least 50% of the measurable PTPase with RCM lysozyme phosphorylated on tyrosyl residues). The PTPA activation is specific for the PTPase activity of the PCSL and PCSH2 phosphatases, without affecting their phosphoseryl/threonyl phosphatase activity. However, effectors of the phosphorylase phosphatase activity, such as polycations and okadaic acid, also influence the PTPase activity. Phosphorylase alpha inhibits the activated PTPase activity (I50 = 5 microM). The PTPase activity of the other oligomeric PCS phosphatases (PCSH1 and PCSM) is not influenced, suggesting an inhibitory role for some of their subunits. This activation is compared with the recently described PTPase stimulation of the PCS phosphatases by ATP/PPi [Goris, J., Pallen, C. J., Parker, P. J., Hermann, J., Waterfield, M. D., & Merlevede, W. (1988) Biochem. J. 256, 1029-1034] and by tubulin [Jessus, C., Goris, J., Cayla, X., Hermann, J., Hendrix, P., Ozon, R., & Merlevede, W. (1989) Eur. J. Biochem. 180, 15-22].  相似文献   

19.
Isolation and partial characterization of an acid carboxypeptidase from yeast   总被引:11,自引:0,他引:11  
R W Kuhn  K A Walsh  H Neurath 《Biochemistry》1974,13(19):3871-3877
  相似文献   

20.
We have identified an activity in rabbit reticulocyte lysate as peptidyl-tRNA hydrolase, based upon its ability to hydrolyze native reticulocyte peptidyl-tRNA, isolated from polyribosomes, and N-acylaminoacyl-tRNA, and its inability to hydrolyze aminoacyl-tRNA, precisely the same substrate specificity previously reported for peptidyl-tRNA hydrolase from bacteria or yeast. The physiological role of the reticulocyte enzyme may be to hydrolyze and recycle peptidyl-tRNA that has dissociated prematurely from elongating ribosomes, as suggested for the bacterial and yeast enzymes, since reticulocyte peptidyl-tRNA hydrolase is completely incapable of hydrolyzing peptidyl-tRNA that is still bound to polyribosomes. We have purified reticulocyte peptidyl-tRNA hydrolase over 5,000-fold from the postribosomal supernatant with a yield of 14%. The purified product shows a 72-kDa band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis that has co-purified with enzyme activity and comprises about 90% of the total stained protein, strongly suggesting that the 72-kDa protein is the enzyme. Sucrose density gradient analysis indicates an apparent molecular mass for the native enzyme of 65 kDa, implying that it is a single polypeptide chain. The enzyme is almost completely inactive in the absence of a divalent cation: Mg2+ (1-2 mM) promotes activity best, Mn2+ is partly effective, and Ca2+ and spermidine are ineffective. The hydrolase shows a Km of 0.60 microM and Vmax of 7.1 nmol/min/mg with reticulocyte peptidyl-tRNA, a Km of 60 nM and Vmax of 14 nmol/min/mg with Escherichia coli fMet-tRNA(fMet), and a Km of 100 nM and Vmax of 2.2 nmol/min/mg with yeast N-acetyl-Phe-tRNA(Phe). The enzyme has a pH optimum of 7.0-7.25, it is inactivated by heat (60 degrees C for 5 min), and its activity is almost completely inhibited by pretreatment with N-ethylmaleimide or incubation with 20 mM phosphate. The fact that the enzyme hydrolyzes E. coli but not yeast or reticulocyte fMet-tRNA(fMet) may be explained, at least in part, by structural similarities between prokaryotic tRNA(fMet) and eukaryotic elongator tRNA that are not shared by eukaryotic tRNA(fMet).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号