首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in the kidney. CFTR mRNA is detected in all nephron segments of rats and humans and its expression is higher in the renal cortex and outer medulla than in the inner medulla. CFTR protein is detected at the apical surface of both proximal and distal tubules of rat kidney but not in the outer medullary collecting ducts. The localization of CFTR in the proximal tubules is compatible with that of endosomes, suggesting that CFTR might regulate pH in endocytic vesicles by equilibrating H+ accumulation due to H+-ATPase activity. Many studies have also demonstrated that CFTR also regulates channel pore opening and the transport of sodium, chloride and potassium. The kidneys also express a CFTR splicing variant, called TNR-CFTR, in a tissue-specific manner, primarily in the renal medulla. This splicing variant conserves the functional characteristics of wild-type CFTR. The functional significance of TNR-CFTR remains to be elucidated, but our group proposes that TNR-CFTR may have a basic function in intracellular organelles, rather than in the plasma membrane. Also, this splicing variant is able to partially substitute CFTR functions in the renal medulla of Cftr-/- mice and CF patients. In this review we discuss the major functions that have been proposed for CFTR and TNR-CFTR in the kidney.  相似文献   

2.
To determine the localization of T4 5'-monodeiodinase activity in rabbit and rat nephron segments, the formation of tri-iodothyronine (T3) from thyroxine (T4) was measured in kidney homogenate and in isolated nephron segments obtained by the microdissection method. In order of decreasing activity, homogenates of rabbit renal cortex, outer medulla and inner medulla were capable of converting T4 to T3. In the isolated nephron segments of the rabbit cortex, the activities were noted in both proximal convoluted and proximal straight tubules. On the other hand, the activities were not detected in segments including the cortical thick ascending limb of Henle's loop, the distal convoluted tubule, the connecting tubule, and the cortical collecting tubule. It is concluded that both the convoluted and the straight tubules are the sites of T3 production in the kidney.  相似文献   

3.
Regional distribution of angiotensin converting enzyme(ACE) in the rat kidney was studied. The ACE activities in the inner cortex and outer medulla were about 10 and 5 times those in the outer cortex, respectively. The activity in the inner medulla or papilla was much the same as that in the outer cortex. Immunofluorescence was greatest in the proximal tubules in the inner cortex, while the outer medulla and the inner medulla or papilla showed a weak fluorescence. The brush border membranes isolated from the inner cortex also possessed about 10 times the ACE activity seen in the outer cortex. The results indicate that the major source of renal ACE is not the proximal convoluted tubules in the outer cortex, but rather the brush border membranes of proximal tubules in the inner cortex. The contribution of ACE in the inner cortex would therefore be predominant.  相似文献   

4.
Angiotensin II receptors in the kidney   总被引:3,自引:0,他引:3  
Angiotensin II (AngII) receptors have been localized in rat kidney by using the high-affinity agonist analog 125I-labeled [Sar1]AngII as a probe for in vitro autoradiography. Receptors were associated with four morphologically distinct patterns of distribution. First, a high density of receptors occurs in glomeruli. These are diffusely distributed, consistent with a mesangial localization. AngII receptor density shows a cortical gradient, which is highest in superficial and midcortical glomeruli and lowest in juxtamedullary glomeruli. Receptors associated with both superficial and deep glomeruli show down-regulation during low-sodium intake. Second, low levels of tubular AngII binding were seen in the outer cortex. Third, a very high density of AngII receptors occurs in longitudinal bands in the inner zone of the outer medulla in association with vasa recta bundles. Receptors in this site also show down-regulation during low dietary sodium intake. Fourth, a moderate density of receptors occurs diffusely throughout the inner zone of the outer medulla in the interbundle areas. These results suggest that AngII exerts a number of different intrarenal regulatory actions. In addition to the known vascular, glomerular, and proximal tubular effects of AngII, these findings focus attention on possible actions of AngII in the renal medulla where it could regulate medullary blood flow and thereby modify the function of the countercurrent concentrating system.  相似文献   

5.
6.
To distinguish biological molecular processes of osmotic stress occurring in inner medulla, we utilized microarrays to monitor expression profiles. RNAs from three segments (cortex, outer medulla, and inner medulla) of mouse kidney were isolated and applied to microarrays. We found 35 genes expressed highly in inner medulla. Next, microarrays for the RNAs from mouse medullary collecting duct cell line (mIMCD) cells and osmotically adapted mIMCD cells (HT cells) were performed (designed as resistant to 1270mOsm/H(2)O). Of 35 genes highly expressed in inner medulla, 6 genes such as; B-cell translocation gene protein (BTG), myc-basic motif homologue, gelsolin, cell surface glycoprotein, laminin beta2, and tubulo-interstitial nephritis antigen, were also expressed highly in HT cells. Using real-time PCR, we confirmed the expression of six genes. Additionally acute osmotic stress induced the BTG. By comparing the inner medulla to a mIMCD3, we identified genes which respond to acute and chronic hyperosmotic stress.  相似文献   

7.
Urea production from arginine was studied in vitro in the kidney of normal rats in tubule suspensions of the four different renal zones (cortex, outer and inner stripe of outer medulla, and inner medulla), and in individual microdissected nephron segments. Tissue was incubated with L-[guanido-14C]-arginine to measure cellular arginase activity. Addition of urease to the incubate freed 14CO2 from the 14C-urea formed by arginase and released from the cells. CO2 was trapped in KOH and counted. These experiments revealed that significant amounts of urea are produced in the outer stripe and in the inner medulla. This intrarenal urea generation takes place mainly in the proximal straight tubule and in the collecting duct, with increasing activity in these two structures from superficial to deep regions of the kidney. Urea is known to play a critical role in the urinary concentrating process. The fact that some urea can be produced in the mammalian kidney, and that the two structures showing this capacity are straight portions of the renal tubular system descending along the corticopapillary axis suggest that this urea production might play a role in the formation and/or maintenance of the medullary urea concentration gradient.  相似文献   

8.
Endogenous noradrenaline and 3,4-dihydroxyphenylethylamine (dopamine) levels were measured in different zones of the dog kidney following chronic unilateral renal denervation. In outer and inner renal cortex, and in outer medulla, greater than 95% of the tissue content of both catecholamines was contributed by renal nerves, whereas in inner medulla only nonneuronal catecholamines were found. The amounts of neuronal dopamine present in outer renal cortex were greater than would be expected for a population of solely noradrenergic nerves.  相似文献   

9.
We examined the potential role of prostaglandins in the development of analgesic nephropathy in the Gunn strain of rat. The homozygous Gunn rats have unconjugated hyperbilirubinemia due to the absence of glucuronyl transferase, leading to marked bilirubin deposition in renal medulla and papilla. These rats are also highly susceptible to develop papillary necrosis with analgesic administration. We used homozygous (jj) and phenotypically normal heterozygous (jJ) animals. Four groups of rats (n = 7) were studied: jj and jJ rats treated either with aspirin 300 mg/kg every other day or sham-treated. After one week, slices of cortex, outer and inner medulla from one kidney were incubated in buffer and prostaglandin synthesis was determined by radioimmunoassay. The other kidney was examined histologically. A marked corticomedullary gradient of prostaglandin synthesis was observed in all groups. PGE2 synthesis was significantly higher in outer medulla, but not cortex or inner medulla, of jj (38 +/- 6 ng/mg prot) than jJ rats (15 +/- 3) (p less than 0.01). Aspirin treatment reduced PGE2 synthesis in all regions, but outer medullary PGE2 remained higher in jj (18 +/- 3) than jJ rats (9 +/- 2) (p less than 0.05). PGF2 alpha was also significantly higher in the outer medulla of jj rats with and without aspirin administration (p less than 0.05). The changes in renal prostaglandin synthesis were accompanied by evidence of renal damage in aspirin-treated jj but not jJ rats as evidenced by: increased incidence and severity of hematuria (p less than 0.01); increased serum creatinine (p less than 0.05); and increase in outer medullary histopathologic lesions (p less than 0.005 compared to either sham-treated jj or aspirin-treated jJ). These results suggest that enhanced prostaglandin synthesis contributes to maintenance of renal function and morphological integrity, and that inhibition of prostaglandin synthesis may lead to pathological renal medullary lesions and deterioration of renal function.  相似文献   

10.
To address the question of insulin-like growth factor (IGF) I localization and synthesis in kidney, we used two complementary experimental approaches: immunohistochemistry of fixed paraffin-embedded rat kidney sections; and measurement of IGF I mRNA in isolated components of the rat nephron, using a highly sensitive and specific solution hybridization assay. Immunostainable IGF I was localized exclusively to principal cells of cortical and medullary collecting ducts. Administration of growth hormone to hypophysectomized rats for 8 d resulted in enhanced immunohistochemical staining of IGF I within collecting ducts, but no detectable IGF I in other portions of the nephron. The abundance of IGF I mRNA was 7-12-fold higher in isolated papillary collecting ducts than in proximal tubules or glomeruli, and was enriched 10-fold compared with whole kidney. Our data demonstrate colocalization of IGF I and IGF I mRNA in the collecting duct, consistent with focal expression of the IGF I gene at this site.  相似文献   

11.
We examined the potential role of prostaglandins in the development of analgesic nephropathy in the Gunn strain of rat. The homozygous Gunn rats have unconjugated hyperbilirubinemia due to the abscence of glucuronyl transferase, leading to marked bilirubin deposition in renal medulla and papilla. These rats are also highly susceptible to develop papillary necrosis with analgesic administration.We used homozygous (jj) and phenotypically normal heterozygous )jJ) animals. Four groups of rats (n = 7) were studied: jj and jJ rats treated either with aspirin 300 mg/kg every other day or sham-treated. After one week, slices of cortex, outer and inner medulla from one kidney wre incubated in buffer and prostaglandin synthesis was determined by radioimmunoassay. The other kidney was examined histologically.A marked corticomedullary gradient of prostaglandin synthesis was observed in all groups, PGE2 synthesis was significantly higher in outer medulla, but not cortex or inner medulla, of jj (38 ± 6 mg/mg prot) than jJ rats (15 ± 3) (p<0.01). Aspirin treatment reduced PGE2 synthesis in all regions, but outer medullary PGE2 remained higher in jj (18 ± 3) than jJ rats (9 ± 2) (p<0.05). PGE2α was also significantly higher in the outer medulla of jj rats with and without aspirin administration (p<0.05). The changes in renal prostaglandin synthesis were accompanied by evidence of renal damage in aspirin-treated jj but not jJ rats as evidenced by: increased incidence and severity of hematuria (p<0.01); increased serum creatinine (p<0.05); and increase in outer medullary histopathologic lesions (p<0.005 compared to either sham-treated jj or aspirin-treated jJ).These results suggest that enhanced protaglandin synthesis contributes to maintenance of renal function and morphological integrity, and that inhibition of protaglandin synthesis may lead to pathological renal medullary lesions and deterioration of renal function.  相似文献   

12.
The hamster renal pelvis has been studied by means of low-power light microscopy, scanning electron microscopy and morphometric analyses. The results of this study are highly suggestive that the contact of pelvic urine with the other medulla as well as with the inner medulla may be an important aspect of final urine formation. The outer medulla constituted nearly 50% of the total pelvic surface area, with the inner stripe of the outer medulla more than twice the pelvic surface area of the outer stripe of the outer medulla. The large outer medullary pelvic surface area was accounted for by the elaboration of the upper pelvic walls into peripelvic columns, opercula ("secondary pyramids"), fornices and secondary pouches. A thin simple-squamous to low cuboidal pelvic epithelium separated pelvic urine from outer medullary parenchyma. The inner medulla which constituted about one quarter of the total pelvic surface area was covered by a cuboidal to columnar pelvic epithelium which appeared morphologically similar to the papillary collecting duct epithelium. Tubules and capillaries of the inner medulla did not appear as closely juxtaposed to the pelvic epithelium as did those of the outer medulla. Cortical tissue comprised only 11.7% of the total pelvic surface area and was covered by transitional epithelium similar to that of ureter and bladder. The previously reported impermeability of this epithelium suggests that pelvic urine contact with the cortex is unimportant in final urine formation. The rich layer of smooth muscle under the transitional epithelium probably functions to move urine into and out of the pelvis during pelvic peristalsis, which has been observed in vivo.  相似文献   

13.
Morphology of rabbit collecting duct.   总被引:5,自引:0,他引:5  
Recently the assumed structural and functional homogeneity of the collecting duct (CD) has been questioned. The objective of this study was to determine if heterogeneity occurs in luminal surface membrane structure or in cytoplasmic configuration of cells in the collecting duct or both. Straight segments of cortical and medullary CD were examined in perfusion-fixed rabbit kidneys with scanning electron microscopy (SEM), light (LM) and transmission electron microscopy (TEM). Principal cells were the most abundant cells in all CD regions; intercalated cells comprised 37% of the cell population on the cortex, 18% in the outer medulla, and less than 1% in the inner medulla. SEM revealed two surface patterns among the ciliated principal cells: 1, located in the cortex and outer medulla, with few surface microvilli, and 2, located in the inner medulla, with abundant microvilli. Intercalated cells exhibited four distinctive luminal surface configurations: I, numerous short microvilli; II, both short and elongate microvilli; III, microplicae alone; and IV, both microvilli and microplicae. Intercalated cells with patterns I and II were predominant in the cortex, while cells with patterns III and IV were most common at the corticomedullary junction. TEM confirmed that marked variation existed in cytoplasmic structures of both principal and intercalated cells. These findings may either indicate the presence of several specific types of principal and intercalated cells or reflect different functional states of the principal and intercalated cells. Regardless of their significance, their presence must be considered in studies seeking to establish precise structural-functional relationships in this region of the rabbit renal tubule.  相似文献   

14.

Background

The pronephros, the simplest form of a vertebrate excretory organ, has recently become an important model of vertebrate kidney organogenesis. Here, we elucidated the nephron organization of the Xenopus pronephros and determined the similarities in segmentation with the metanephros, the adult kidney of mammals.

Results

We performed large-scale gene expression mapping of terminal differentiation markers to identify gene expression patterns that define distinct domains of the pronephric kidney. We analyzed the expression of over 240 genes, which included members of the solute carrier, claudin, and aquaporin gene families, as well as selected ion channels. The obtained expression patterns were deposited in the searchable European Renal Genome Project Xenopus Gene Expression Database. We found that 112 genes exhibited highly regionalized expression patterns that were adequate to define the segmental organization of the pronephric nephron. Eight functionally distinct domains were discovered that shared significant analogies in gene expression with the mammalian metanephric nephron. We therefore propose a new nomenclature, which is in line with the mammalian one. The Xenopus pronephric nephron is composed of four basic domains: proximal tubule, intermediate tubule, distal tubule, and connecting tubule. Each tubule may be further subdivided into distinct segments. Finally, we also provide compelling evidence that the expression of key genes underlying inherited renal diseases in humans has been evolutionarily conserved down to the level of the pronephric kidney.

Conclusion

The present study validates the Xenopus pronephros as a genuine model that may be used to elucidate the molecular basis of nephron segmentation and human renal disease.  相似文献   

15.
16.
A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.  相似文献   

17.
18.
Oxidative stress damages cells. NaCl and urea are high in renal medullary interstitial fluid, which is necessary to concentrate urine, but which causes oxidative stress by elevating reactive oxygen species (ROS). Here, we measured the antioxidant enzyme superoxide dismutases (SODs, MnSOD, and Cu/ZnSOD) and catalase in mouse kidney that might mitigate the oxidative stress. MnSOD protein increases progressively from the cortex to the inner medulla, following the gradient of increasing NaCl and urea. MnSOD activity increases proportionately, but MnSOD mRNA does not. Water restriction, which elevates renal medullary NaCl and urea, increases MnSOD protein, accompanied by a proportionate increase in MnSOD enzymatic activity in the inner medulla, but not in the cortex or the outer medulla. In contrast, Cu/ZnSOD and TNF-α (an important regulator of MnSOD) do not vary between the regions of the kidney, and expression of catalase protein actually decreases from the cortex to the inner medulla. Water restriction increases activity of mitochondrial enzymes that catalyze production of ROS in the inner medulla, but reduces NADPH oxidase activity there. We also examined the effect of high NaCl and urea on MnSOD in Madin-Darby canine kidney (MDCK) cells. High NaCl and high urea both increase MnSOD in MDCK cells. This increase in MnSOD protein apparently depends on the elevation of ROS since it is eliminated by the antioxidant N-acetylcysteine, and it occurs without raising osmolality when ROS are elevated by antimycin A or xanthine oxidase plus xanthine. We conclude that ROS, induced by high NaCl and urea, increase MnSOD activity in the renal inner medulla, which moderates oxidative stress.  相似文献   

19.
2-Bromoethylamine hydrobromide (BEA), when administered to rats, induces a highly specific papillary necrosis associated with the inner medulla. PAF levels in the blood were lowered by 50% and of the three enzymes that comprise the de novo route for PAF in the cortex/medulla, only the cholinephosphotransferase activity in the inner medulla microsomes was reduced (33%) by the BEA treatment. Moreover, BEA did not affect phosphatidylcholine synthesis in either the cortex or inner medulla. Our studies indicate that the de novo pathway for PAF synthesis in the renal inner medulla is responsible for the secretion of newly formed PAF into the blood stream and that a single enzyme in the de novo route accounts for the decreased rate of PAF synthesis during the development of renal necrosis.  相似文献   

20.
The cortical actinin contents was found to be higher in the inner medulla of the rat kidney. Tropomyosin was distributed differently: it is lower in the cortex than in outer or inner medulla. The processes controlled by these proteins seem to be important for the vasopressin renal effects, and the irregular distribution of these proteins reflects participation of different renal areas in facultative water reabsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号