首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Ovotransferrin (POT), two ovalbumins (POA(hi) and POA(lo)), and ovomucoid (POM) were isolated from pigeon egg white (PEW). Unlike their chicken egg white counterparts, PEW glycoproteins contain terminal Galalpha1-4Gal, as evidenced by GS-I lectin (specific for terminal alpha-Gal), anti-P(1) (Galalpha1-4Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta1-1Cer) monoclonal antibody, and P fimbriae on uropathogenic Escherichia coli (specific for Galalpha1-4Gal). Galalpha1-4Gal on PEW glycoproteins were found in N-glycans releasable by treatment with glycoamidase F. The respective contents of N-glycans in each glycoprotein were 3.5%, POT; 17%, POA(hi); and 31-37%, POM. POA(hi) has four N-glycosylation sites, in contrast to chicken ovalbumin, which has only one. High performance liquid chromatography analysis showed that N-glycans on POA(hi) were highly heterogeneous. Mass spectrometric analysis revealed that the major N-glycans were monosialylated tri-, tetra-, and penta-antennary oligosaccharides containing terminal Galalpha1-4Gal with or without bisecting N-acetylglucosamine. Oligosaccharide chains terminating in Galalpha1-4Gal are rare among N-glycans from the mammals and avians that have been studied, and our finding is the first predominant presence of (Galalpha1-4Gal)-terminated N-glycans.  相似文献   

2.
Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  相似文献   

3.
Wu AM  Singh T  Wu JH  Lensch M  André S  Gabius HJ 《Glycobiology》2006,16(6):524-537
Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.  相似文献   

4.
N-Glycans from major glycoproteins of pigeon egg white (ovotransferrin, ovomucoid, and ovalbumins) were enzymatically released and were reductively aminated with 2-aminopyridine, separated, and structurally characterized by mass spectrometry and a three-dimensional mapping technique using three different columns of high performance liquid chromatography (HPLC) (Takahashi, N., Nakagawa, H., Fujikawa, K., Kawamura, Y., and Tomiya, N. (1995) Anal. Biochem. 226, 139-146). Twenty-five major N-glycan structures, all of them hitherto unknown, were identified as pyridylamino derivatives. Of these, 13 were neutral, 10 were monosialyl, and 2 were disialyl oligosaccharides. All N-glycans contain from one to four Galalpha(1,4)Galbeta(1,4) sequences at the nonreducing terminal positions and are devoid of fucose residues. N-Acetylneuraminic acids were alpha(2,6)-linked only to beta-galactose. The HPLC profiles of the N-glycans from four different glycoproteins were qualitatively very similar to each other, but not identical in the peak distributions. Monosialyl glycans were most abundant in all four glycoproteins, followed by neutral glycans. Disialyl glycans were lowest in ovotransferrin, and highest in ovomucoid. Triantennary structures with bisecting GlcNAc were predominant in ovotransferrin, and tetra-antennary (with and without bisecting GlcNAc-containing) structures were predominant in other glycoproteins. Penta-antennary structures (with a sialic acid and without bisecting GlcNAc residue) were also found in small quantities in all four glycoproteins. In contrast to the chicken egg white counterparts, which contain mostly high mannose and hybrid types, all N-glycan structures in the major pigeon egg white glycoproteins are complex type.  相似文献   

5.
The localization and characterization of oligosaccharide sequences in the cat testis was investigated using 12 lectins in combination with the beta-elimination reaction, N-Glycosidase F and sialidase digestion. Leydig cells expressed O-linked glycans with terminal alphaGalNAc (HPA reactivity) and N-glycans with terminal/internal alphaMan (Con A affinity). The basement membrane showed terminal Neu5Acalpha2,6Gal/GalNAc, Galbeta1,3GalNAc, alpha/betaGalNAc, and GlcNAc (SNA, PNA, HPA, SBA, GSA II reactivity) in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc (RCA120 staining) and alphaMan in N-linked oligosaccharides; in addition, terminal Neu5acalpha2,3Galbeta1,4GlcNac, Forssman pentasaccharide, alphaGal, alphaL-Fuc and internal GlcNAc (MAL II, DBA, GSA I-B4, UEA I, KOH-sialidase-WGA affinity) formed both O- and N-linked oligosaccharides. The Sertoli cells cytoplasm contained terminal Neu5Ac-Galbeta1,4GlcNAc, Neu5Ac-betaGalNAc as well as internal GlcNAc in O-linked glycans, alphaMan in N-linked glycoproteins and terminal Neu5Acalpha2,6Gal/ GalNAc in both O- and N-linked oligosaccharides. Spermatogonia exhibited cytoplasmic N-linked glycoproteins with alphaMan residues. The spermatocytes cytoplasm expressed terminal Neu5Acalpha2,3Galbeta1,4 GlcNAc and Galbeta1,3GalNAc in O-linked oligosaccharides, terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-linked glycoconjugates. The Golgi region showed terminal Neu5Acalpha2,3Galbeta1,4GlcNac, Galbeta1,4GlcNAc, Forssman pentasaccharide, and alphaGalNAc in O-linked oligosaccharides, alphaMan and terminal betaGal in N-linked oligosaccharides. The acrosomes of Golgi-phase spermatids expressed terminal Galbeta1,3GalNAc, Galbeta1,4GlcNAc, Forssmann pentasaccharide, alpha/betaGalNAc, alphaGal and internal GlcNAc in O-linked oligosaccharides, terminal alpha/betaGalNAc, alphaGal and terminal/internal alphaMan in N-linked glycoproteins. The acrosomes of cap-phase spermatids lacked internal Forssman pentasaccharide and alphaGal, while having increased alpha/betaGalNAc. The acrosomes of elongated spermatids did not show terminal Galbeta1,3GalNAc, displayed terminal Galbeta1,4GlcNAc and alpha/betaGalNAc in N-glycans and Neu5Ac-Galbeta1,3GalNAc in O-linked oligosaccharides.  相似文献   

6.
Megalin (gp 330) is a large cell surface receptor expressed on the apical surfaces of epithelial tissues, that mediates the binding and internalization of a number of structurally and functionally distinct ligands. In this paper we report the first detailed structural characterization of megalin-derived oligosaccharides. Using strategies based on mass spectrometric analysis, we have defined the structures of the N-glycans of megalin. The results reveal that megalin glycoprotein is heterogeneously glycosylated. The major N-glycans identified belong to the following two classes: high mannose structures and complex type structures, with complex structures being more abundant than high mannose structures. The major nonreducing epitopes in the complex-type glycans are: GlcNAc, Galbeta1-4GlcNAc (LacNAc), NeuAcalpha2-6Galbeta1-4GlcNAc (sialylated LacNAc), GalNAcbeta1-4[NeuAcalpha2-3]Galbeta1-4GlcNAc (Sd(a)) and Galalpha1-3Galbeta1-4GlcNAc. Most complex structures are characterized by the presence of (alpha1,6)-core fucosylation and the presence of a bisecting GlcNAc residue.  相似文献   

7.
The galabiose structure Galalpha1-4Gal is rarely found in natural glycoproteins, but is abundantly present in pigeon egg white proteins as Galalpha(1-4)Galbeta(1-4)GlcNAc termini. Pigeon ovalbumin, ovomucoid, or the whole egg white were immobilized on periodate-oxidized Sepharose CL-6B gels by reductive amination. These gels were found to bind Shiga-like toxin type 1 (SLT-1) specifically and efficiently. SLT-1 was eluted from the gel beads with 0.5 M melibiose, which was more efficient and milder than elution with 4.5 M MgCl(2). SLT-1 was purified to homogeneity from the crude extract of Escherichia coli SLT100 expressing SLT-1 by a single affinity chromatographic step in 83-88% yield. The capacity of the gel was estimated to be ca. 1mg toxin/ml gel. Interestingly, SLT-2 was not bound by these affinity gels containing Galalpha1-4Galbeta1-4GlcNAc termini. Since SLT-2 has been shown to bind to Galalpha1-4Galbeta1-4Glc-terminating compounds, our results suggest that Glc in globotriose moiety is important for binding SLT-2, and replacing the Glc with GlcNAc in this triose renders it ineffective for binding SLT-2.  相似文献   

8.
Pig-to-human xenotransplantation might be an option to overcome the increasing shortage of human donor organs. However, naturally occurring antibodies in human blood against the Galalpha1-->3Gal antigen on pig endothelial cells lead to hyperacute or, if prevented, acute or delayed vascular rejection of the pig graft. The purpose of this study was therefore to evaluate synthetic oligosaccharides with terminal Galalpha1-->3Gal to inhibit antigen-binding and cytotoxicity of anti-alphaGal antibodies against pig cells. Different oligosaccharides were synthesized chemically and by a combined chemico-enzymatic approach. These included monomeric di-, tri-, and pentasaccharides, a polyacrylamide-conjugate (PAA-Bdi), as well as di-, tetra-, and octamers of Galalpha1-->3Gal. All were tested for inhibitory activity by anti-alphaGal ELISA and complement-dependent cytotoxicity tests. PAA-Bdi was the best inhibitor of binding as well as cytotoxicity of anti-alphaGal antibodies. Monomeric oligosaccharides efficiently prevented binding of anti-alphaGal IgG, but less well that of anti-alphaGal IgM, with tri- and pentasaccharides showing a better efficacy than the disaccharide. The two trisaccharides Galalpha1-->3Galbeta1-->4GlcNAc and Galalpha1-->3Galbeta1-->3GlcNAc were equally effective. Oligomers of Galalpha1-->3Gal were more effective than monomers in blocking the binding of anti-alphaGal IgG. However, they could not block IgM binding, nor could they match the efficacy of PAA-Bdi. We conclude that oligosaccharides with terminal Galalpha1-->3Gal, most effectively as PAA-conjugates, can prevent binding and cytotoxicity of human anti-alphaGal in vitro. The PAA-Bdi conjugate might be most suited for use as a Sepharose-bound immunoabsorption material.  相似文献   

9.
Galalpha1-4Gal is typically found in mammalian glycolipids in small quantities, and recognized by some pathogens, such as uropathogenic Escherichia coli. In contrast, glycoproteins containing Galalpha1-4Gal were rarely found in vertebrates except in a few species of birds and amphibians until recently. However, we had previously reported that pigeon (Columba livia) egg white and serum glycoproteins are rich in N-glycans with Galalpha1-4Gal at non-reducing termini. Our investigation with egg white glycoproteins from 181 avian species also revealed that the distribution of (Galalpha1-4Gal)-containing glycoproteins was not rare among avians, and is correlated with the phylogeny of birds. The differentiated expression was most likely emerged at earlier stage of diversification of modern birds, but some birds might have lost the facility for the expression relatively recently.  相似文献   

10.
The white-tailed deer is the definitive host of the parasitic nematode Parelaphostrongylus tenuis. This parasite also infects a wide variety of domesticated livestock, causing a debilitating neurologic disease. Glycoconjugates are becoming increasingly implicated in nematode strategies to maintain persistent infections in immunologically competent hosts. In this study, we have carried out detailed mass spectrometric analysis together with classical biochemical techniques, including western blotting and immunohistochemical staining with anticarbohydrate monoclonal antibodies and have shown that P. tenuis contains complex-type N-glycans with the antennae capped with Galalpha1-3Galbeta1-4GlcNAc sequence. By mimicking a vertebrate glycan, Galalpha1-3Gal may aid the parasite in evading immunological detection by the host. This is the first report of the Galalpha1-3Gal sequence in a nematode.  相似文献   

11.
During the N-glycosylation reaction, it has been shown that 'free' N-glycans are generated either from lipid-linked oligosaccharides or from misfolded glycoproteins. In both cases, occurrence of high mannose-type free glycans is well-documented, and the molecular mechanism for their catabolism in the cytosol has been studied. On the other hand, little, if anything, is known with regard to the accumulation of more processed, complex-type free oligosaccharides in the cytosol of mammalian cells. During the course of comprehensive analysis of N-glycans in cancer cell membrane fractions [Naka et al. (2006) J. Proteome Res. 5, 88-97], we found that a significant amount of unusual, complex-type free N-glycans were accumulated in the stomach cancer-derived cell lines, MKN7 and MKN45. The most abundant and characteristic glycan found in these cells was determined to be NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-2Manalpha1-3Manbeta1-4GlcNAc. Biochemical analyses indicated that those glycans found were cytosolic glycans derived from lysosomes due to low integrity of the lysosomal membrane. Since the accumulation of these free N-glycans was specific to only two cell lines among the various cancer cell lines examined, these cytosolic N-glycans may serve as a specific biomarker for diagnosis of specific tumours. A cytosolic sialidase, Neu2, was shown to be involved in the degradation of these sialoglycans, indicating that the cytosol of mammalian cells might be equipped for metabolism of complex-type glycans.  相似文献   

12.
The asparagine-linked sugar chains of the plasma membrane glycoproteins of rat erythrocytes were released as oligosaccharides by hydrazinolysis and labeled by NaB3H4 reduction. The radioactive oligosaccharides were separated into a neutral and at least four acidic fractions by paper electrophoresis. The neutral oligosaccharide fraction was separated into at least 11 peaks upon Bio-Gel P-4 column chromatography. Structural studies of them by sequential exoglycosidase digestion in combination with methylation analysis revealed that they were a mixture of three high mannose-type oligosaccharides and at least 11 complex type oligosaccharides with Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4(±Fucα1 → 6)GlcNAc as their cores and Galβ1 → 4GlcNAc, Galβ1 → 3Galβ1 → 4GlcNAc, and various lengths of Galβ1 → 4GlcNAc repeating chains in their outer chain moieties. Most of the complex-type Oligosaccharides were biantennary, and the tri- and tetraantennary Oligosaccharides contain only the Galβ1 → 3Galβ1 → 4GlcNAc group in their outer chain moieties.  相似文献   

13.
Cobra venom factor (CVF), a nontoxic, complement-activating glycoprotein in cobra venom, is a functional analog of mammalian complement component C3b. The carbohydrate moiety of CVF consists exclusively of N-linked oligosaccharides with terminal alpha1-3-linked galactosyl residues, which are antigenic in human. CVF has potential for several medical applications, including targeted cell killing and complement depletion. Here, we report a detailed structural analysis of the oligosaccharides of CVF. The structures of the oligosaccharides were determined by lectin affinity chromatography, antibody affinity blotting, compositional and methylation analyses, and high-resolution (1)H-NMR spectroscopy. Approximately 80% of the oligosaccharides are diantennary complex-type, approximately 12% are tri- and tetra-antennary complex-type, and approximately 8% are oligomannose type structures. The majority of the complex-type oligosaccharides terminate in Galalpha1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1, a unique carbohydrate structural feature abundantly present in the glycoproteins of cobra venom.  相似文献   

14.
Pseudomonas aeruginosa produces a galactophilic lectin, PA-IL, that resembles P-fimbrial adhesins of uropathogenic Escherichia coli strains in binding to human P blood group antigens. We examined, in the present study, its interaction with pigeon egg white glycoproteins carrying N-glycans with terminal Galalpha1-4Gal which inhibit the adhesion of P-fimbriae. For comparison, the lectin concanavalin A (Con A) and additional avian egg whites (of hen and quail) were also examined. The results obtained in both hemagglutination inhibition and Western blot analyses showed that PA-IL, unlike Con A, preferentially reacted with the pigeon egg white glycoproteins. These results, which confirmed PA-IL similarity in sugar specificity to E. coli P-fimbriae, demonstrated the advantage of this purified lectin for representing P-type and additional galactophilic microbial adhesins unavailable in purified stable form, in Western blot analyses.  相似文献   

15.
Natural anti-NOR antibodies are common in human sera and agglutinate human erythrocytes of a rare NOR phenotype. The NOR phenotype-related antigens are unique neutral glycosphingolipids recognized by these antibodies and Griffonia simplicifolia IB4 isolectin (GSL-IB4). The oligosaccharide chains of NOR glycolipids are terminated by Galalpha1-4GalNAcbeta1-3Galalpha units. To characterize the specificity of anti-NOR antibodies and compare it with specificities of GSL-IB4 and known anti-Galalpha1,3Gal antibodies, alpha-galactosylated saccharides and saccharide-polyacrylamide conjugates were used. New synthetic oligosaccharides, corresponding to the terminal di- and trisaccharide sequence of NOR glycolipids and the conjugate of the NOR-tri with HSA were included. These compounds were tested by microtiter plate ELISA and hemagglutination inhibition. Anti-NOR antibodies reacted most strongly with Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), and over 100 times less strongly with Galalpha1-4GalNAc (NOR-di). The antibodies reacted also with Galalpha1-4Gal and Galalpha1-4Galbeta1-4GlcNAc, similarly as with NOR-di but not with other tested compounds. In turn, anti-Galalpha1,3Gal antibodies reacted most strongly with Galalpha1-3Gal and were very weakly inhibited by the NOR-related oligosaccharides (weaker than by galactose), and NOR-tri was less active than NOR-di. GSL-IB4 reacted with all tested alpha-galactosylated saccharides and conjugates, including the similarly active NOR-tri and NOR-di. These results showed that anti-NOR represent a new species of anti-alpha-galactosyl antibodies with high affinity for the Galalpha1-4GalNAcbeta1-3Gal sequence present in rare NOR erythrocytes.  相似文献   

16.
On a way of structural analysis of total N-glycans linked to glycoproteins in royal jelly (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000), Kimura, M. et al., Biosci. Biotechnol. Biochem., 66, 1985-1989 (2002)), we found that some complex type N-glycans containing a beta1-3galactose residue occur on the insect glycoproteins. Up to date, it has been considered that naturally occurring insect glycoproteins do not bear the galactose-containing N-glycans, therefore, in this report we describe the structural analysis of the complex type N-glycans of royal jelly glycoproteins.By a combination of endo- and exo-glycosidase digestions, IS-MS analysis, and 1H-NMR spectroscopy, the structures of the beta1-3 galactose-containing N-glycan were identified as the following; GlcNAcbeta1-2Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, Manalpha1-3Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc, and Manalpha1-6(Manalpha1-3)Manalpha1-6[GlcNAcbeta1-2(Galbeta1-3GlcNAcbeta1-4)Manalpha1-3]Manbeta1-4GlcNAcbeta1-4GlcNAc. To our knowledge, this is the first report showing that the Galbeta1-3GlcNAcbeta1-4Man unit occurs in N-glycans of insect glycoproteins, indicating a beta1-3 galactosyl transferase and beta1-4GlcNAc transferase (GNT-IV) are expressed in the honeybee cells.  相似文献   

17.
The rare NOR erythrocytes, which are agglutinated by most human sera, contain unique glycosphingolipids (globoside elongation products) terminating with the sequence Galalpha1-4GalNAcbeta1-3Gal- recognized by common natural human antibodies. Anti-NOR antibodies were isolated from several human sera by affinity procedures, and their specificity was tested by inhibition of antibody binding to NOR-tri-polyacrylamide (PAA) conjugate (ELISA) by the synthetic oligosaccharides, Galalpha1-4GalNAcbeta1-3Gal (NOR-tri), Galalpha1-4GalNAc (NOR-di), Galalpha1-4Galbeta1-3Galbeta1-4Glc ((Gal)3Glc), and Galalpha1-4Gal (P1-di). Two major types of subspecificity of anti-NOR antibodies were found. Type 1 antibodies were found to react strongly with (Gal)3Glc and NOR-tri and weakly with P1-di and NOR-di, which indicated specificity for the trisaccharide epitope Galalpha1-4Gal/GalNAcbeta1-3Gal. Type 2 antibodies were specific to Galalpha1-4GalNAc, because they were inhibited most strongly by NOR-tri and NOR-di and were not (or very weakly) inhibited by (Gal)3Glc and P1-di. Monoclonal anti-NOR antibodies were obtained by immunizing mice with NOR-tri-human serum albumin (HSA) conjugate and were found to have type 2 specificity. All anti-NOR antibodies reacted specifically with NOR glycolipids on thin-layer plates. The cross-reactivity of type 1 anti-NOR antibodies with Galalpha1-4Gal drew attention to a possible antigenic relationship between NOR and blood group P system glycolipids. The latter glycolipids include Pk (Galalpha1-4Galbeta1-4Glc-Cer) present in all normal erythrocytes and P1 (Galalpha1-4Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) present only in P1 erythrocytes. Sera of some P2 (P1-negative) persons contain natural anti-P1 antibodies. This prompted us to test the specificity of anti-P1 antibodies. Natural human anti-P1 isolated from serum of P2 individual and mouse monoclonal anti-P1 were best inhibited by Galalpha1-4Galbeta1-4GlcNAc (P1-tri) and did not react with NOR-tri and NOR-di. Monoclonal anti-P1 bound to Pk and P1 glycolipids and not to NOR glycolipids. These results indicated an entirely different specificity of anti-NOR and anti-P1 antibodies. Human serum samples differed in the content of anti-alpha-galactosyl antibodies, including both types of anti-NOR. In the sera of some individuals, type 1 or type 2 anti-NOR antibodies dominated, and other samples contained mixtures of both types of anti-NOR. The biological significance of these new abundant anti-alpha-galactosyl antibodies still awaits elucidation.  相似文献   

18.
P B Ahrens  H Ankel 《Biochimie》1988,70(11):1619-1625
Chinese hamster ovary cell lines with different types of N-linked oligosaccharides were tested as targets for control and lymphokine treated natural killer (NK) cells. The targets tested were parent cells, Lec1 mutants and Lec4 mutants. Due to an apparent defect in GlcNAc transferase V, Lec4 cells produce complex-type N-linked oligosaccharides devoid of GlcNAc beta(1-6) linked branches. Lec1 cells form only high mannose-type N-linked oligosaccharides because they lack GlcNAc transferase I activity. Lec1 cells are very sensitive to lysis by beta-interferon treated human NK cells, but both parent and Lec4 cells are resistant to NK lysis. The ability to discriminate between parent and Lec1 targets was demonstrated with untreated control effectors as well as those which were pretreated with either beta-interferon, gamma-interferon or interleukin-2. Both control and lymphokine-boosted NK cells exhibit much greater lytic activity against targets having only high mannose-type N-linked oligosaccharides. Five oligosaccharide structures resembling those found on N-linked glycoproteins were tested for their ability to block NK lysis of Lec1 targets. Only the high mannose-type glycopeptide from 7S soybean glycoprotein was inhibitory in the mu molar range. At the same concentration, none of the complex-type oligosaccharides had any effect on lytic activity. The results suggest that a high mannose-type N-linked oligosaccharides is recognized at some step in NK cell-mediated lysis.  相似文献   

19.
This article reports the first rigorous evidence for the existence of N-glycans in Giardia intestinalis, a parasite that is a widespread human pathogen, being a major cause of enteric disease in the world. Excreted/secreted molecules of G. intestinalis are known to stimulate the immune system. Structural strategies based on MALDI and electrospray mass spectrometry were employed to examine the excreted/secreted molecules for their N-glycan content. These revealed that the major oligosaccharides released by peptide N-glycosidase F are complex-type structures and correspond to bi-, and triantennary structures without core (alpha1,6) fucosylation. The major nonreducing epitopes in these complex-type glycans are: Galbeta1-4GlcNAc (LacNAc) and NeuAc alpha2-6Galbeta1-4GlcNAc (sialylated LacNAc).  相似文献   

20.
An agglutinin that has high affinity for GalNAcbeta1-->, was isolated from seeds of Wistaria sinensis by adsorption to immobilized mild acid-treated hog gastric mucin on Sepharose 4B matrix and elution with aqueous 0.2 M lactose. The binding property of this lectin was characterized by quantitative precipitin assay (QPA) and by inhibition of biotinylated lectin-glycan interaction. Of the 37 glycoforms tested by QPA, this agglutinin reacted best with a GalNAcbeta1-->4 containing glycoprotein (GP) [Tamm-Horsfall Sd(a+) GP]; a Galbeta1-->4GlcNAc containing GP (human blood group precursor glycoprotein from ovarian cyst fluid and asialo human alpha1-acid GP) and a GalNAcalpha1-->3GalNAc containing GP (asialo bird nest GP), but poorly or not at all with most sialic acid containing glycoproteins. Among the oligosaccharides tested, GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Fp) was the most active ligand. It was as active as GalNAc and two to 11 times more active than Tn cluster mixtures, Galbeta1--> 3/4GlcNAc (I/II), GalNAcalpha1-->3(L-Fucalpha1-->2)Gal (Ah), Galbeta1-->4Glc (L), Galbeta1-->3GalNAc (T) and Galalpha1--> 3Galalpha-->methyl (B). Of the monosaccharides and their glycosides tested, p-nitrophenyl betaGalNAc was the best inhibitor; it was approximately 1.7 and 2.5 times more potent than its corresponding alpha anomer and GalNAc (or Fp), respectively. GalNAc was 53.3 times more active than Gal. From the present observations, it can be concluded that the Wistaria agglutinin (WSA) binds to the C-3, C-4 and C-6 positions of GalNAc and Gal residues; the N-acetyl group at C-2 enhances its binding dramatically. The combining site of WSA for GalNAc related ligands is most likely of a shallow type, able to recognize both alpha and beta anomers of GalNAc. Gal ligands must be Galbeta1-->3/4GlcNAc related, in which subterminal beta1-->3/4 GlcNAc contributes significantly to binding; hydrophobicity is important for binding of the beta anomer of Gal. The decreasing order of the affinity of WSA for mammalian structural carbohydrate units is Fp >/= multi-II > monomeric II >/= Tn, I and Ah >/= E and L > T > Gal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号