首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Iglic  S Svetina    B Zeks 《Biophysical journal》1995,69(1):274-279
A possible physical interpretation of the partial detachment of the membrane skeleton in the budding region of the cell membrane and consequent depletion of the membrane skeleton in red blood cell vesicles is given. The red blood cell membrane is considered to consist of the bilayer part and the membrane skeleton. The skeleton is, under normal conditions, bound to the bilayer over its whole area. It is shown that, when in such conditions it is in the expanded state, some cell shape changes can induce its partial detachment. The partial detachment of the skeleton from the bilayer is energetically favorable if the consequent decrease of the skeleton expansion energy is larger than the corresponding increase of the bilayer-skeleton binding energy. The effect of shape on the skeleton detachment is analyzed theoretically for a series of the pear class shapes, having decreasing neck diameter and ending with a parent-daughter pair of spheres. The partial detachment of the skeleton is promoted by narrowing of the cell neck, by increasing the lateral tension in the skeleton and its area expansivity modulus, and by diminishing the attraction forces between the skeleton and the bilayer. If the radius of the daughter vesicle is sufficiently small relative to the radius of the parent cell, the daughter vesicle can exist either completely underlaid with the skeleton or completely depleted of the skeleton.  相似文献   

2.
3.
Hereditary disorders of the red cell membrane skeleton   总被引:8,自引:0,他引:8  
The hereditary hemolytic anemias include a heterogeneous class of disorders caused by defects in the proteins that constitute the membrane skeleton of the red blood cell. The combination of classical and molecular genetics together with clinical findings is rapidly improving our understanding of the basis of these defects.  相似文献   

4.
Elasticity of the human red blood cell skeleton   总被引:2,自引:0,他引:2  
We have measured by optical tweezers micromanipulations the area expansion and the shear moduli of spectrin skeletons freshly extracted from human red blood cells, in different controlled salinity conditions. At medium osmolarity (150 mOsm/kg), we measure KC=9.7+/-3.4 microN/m, muC=5.7+/-2.3 microN/m, KC/muC=2.1+/-0.7. When decreasing the osmolarity, both KC and muC decrease, while KC/muC is nearly constant and equal to about 2. This result is consistent with the predictions made when modeling the spectrin skeleton by a two-dimensional triangular lattice of springs. From the measured elastic moduli we estimate the persistence length of a spectrin filament: xi approximately 2.5 nm at 150 mOsm/kg.  相似文献   

5.
We studied the structure and elasticity of membrane skeletons from human red blood cells (RBCs) during and after extraction of RBC ghosts with nonionic detergent. Optical tweezers were used to suspend individual cells inside a flow chamber, away from all surfaces; this procedure allowed complete exchange of medium while the low-contrast protein network of the skeleton was observed by high resolution, video-enhanced differential interference-contrast (DIC) microscopy. Immediately following extraction in a 5 mM salt buffer, skeletons assumed expanded, nearly spherical shapes that were uncorrelated with the shapes of their parent RBCs. Judging by the extent of thermal undulations and by their deformability in small flow fields, the bending rigidity of skeletons was markedly lower than that of either RBCs or ghosts. No further changes were apparent in skeletons maintained in this buffer for up to 40 min at low temperatures (T less than 10 degrees C), but skeletons shrank when the ionic strength of the buffer was increased. When the salt concentration was raised to 1.5 M, shrinkage remained reversible for approximately 1 min but thereafter became irreversible. When maintained in 1.5 M salt buffer for longer periods, skeletons continued to shrink, lost flexibility, and assumed irregular shapes: this rigidification was irreversible. At this stage, skeletons closely resembled those isolated in standard bulk preparations. We propose that the transformation to the rigid, irreversibly shrunken state is a consequence of spectrin dimer-dimer reconnections and that these structural rearrangements are thermally activated. We also measured the salt-dependent size of fresh and bulk extracted skeletons. Our measurements suggest that, in situ, the spectrin tethers are flexible, with a persistence length of approximately 10 nm at 150 mM salt.  相似文献   

6.
The stress-free shape of the red blood cell membrane.   总被引:3,自引:2,他引:1       下载免费PDF全文
The two main proposals found in the literature for the stress-free shape of the red cell membrane are (a) the bioconcave shape and (b) the sphere of the same surface area. These possibilities are evaluated in this paper using theoretical modeling of equilibrium membrane shapes according to Zarda et al. (1977. J. Biomech. 10:211-221) and by comparison to experiments on red cells whose membrane shear modulus has been increased by treatment with diamide. Neither proposal is found to be compatible with all the experimental behaviour of native red cells. Neither proposal is found to be compatible with all the experimental behaviour of native red cells. To account for this discrepancy we propose that either the shear modulus of the native membrane is dependent on the membrane strain or that the bending stiffness is higher than estimated by Evans (1980. Biophys. J. 30:265-286). These studies suggest that the bioconcave disk is the more likely possibility for the stress-free shape.  相似文献   

7.
The thickness of the red cell membrane skeleton was deduced from measurements of the isthmus zones of intact cells that were maximally narrowed by one of two independent methods. The first method involved application of viscous drag to red cells entrapped between spider web fibers. The second method utilized cellular dehydration followed by spectrin denaturation at 49.5 degrees C. Measurements on thin sections showed that the isthmus is narrowed to approximately 120 nm by either method, suggesting that the membrane skeleton occupies a zone beneath the lipid bilayer that is up to 60 nm in thickness. The tertiary and quarternary structure of band 3, a major integral membrane protein that anchors the membrane skeleton to the lipid bilayers may be a critical determinant of the location of the membrane skeleton within the red cell.  相似文献   

8.
The molecular basis for the elasticity of the human erythrocyte membrane was explored. Skeletons were released from ghosts in Triton X-100 and their dimensions followed by dark-field microscopy and packed volume. The rest size of skeletons was assumed to reflect the balance point between expansion (deformation) driven by electrostatic repulsions among the excess of fixed negative charges on the proteins and contraction (recovery) driven by their elasticity. The size of skeletons decreased with increasing temperature. This finding suggests that entropy drives elasticity. The requisite entropy change could be associated with either the configurational freedom of flexible protein chains or with the solvation of side chains exposed during protein dissociation (hydrophobic effects). To distinguish between these two alternatives, we tested the impact of two weak denaturants, 10% ethanol and 20 nM lithium 3,5-diiodosalicylate. Both agents reversibly promoted the expansion of skeletons, presumably by reducing their elasticity. Since the conformation of random coils and globular proteins should not be significantly altered by these mild treatments, this finding strongly suggests a role for weak interdomain and/or interprotein associations. We conclude that the elasticity of the red cell membrane skeleton may not derive from the configurational entropy of flexible coils. Rather, the elastic energy may arise from reversible dissociations of weak but specific intramolecular and/or intermolecular contacts, presumably within deformed spectrin filaments.  相似文献   

9.
The calcium receptor calmodulin interacts with components of the human red cell membrane skeleton as well as with the membrane. Under physiological salt conditions, calmodulin has a calcium-dependent affinity for spectrin, one of the major components of the membrane skeleton. It is apparent from our results that calmodulin inhibits the ability of erythrocyte spectrin (when preincubated with filamentous actin) to create nucleation centers and thereby to seed actin polymerization. The gelation of filamentous actin induced by spectrin tetramers is also inhibited by calmodulin. The inhibition is calcium dependent and decreases with increasing pH, similar to the binding of calmodulin to spectrin. Direct binding studies using aqueous two-phase partition indicate that calmodulin interferes with the binding of actin to spectrin. Even in the presence of protein 4.1, which is believed to stabilize the ternary complex, calmodulin has an inhibitory effect. Since calmodulin also inhibits the corresponding activities of brain spectrin (fodrin), it appears likely that calmodulin may modulate the organization of cytoskeletons containing actin and spectrin or spectrin analogues.  相似文献   

10.
The red cell skeleton and its genetic disorders   总被引:8,自引:0,他引:8  
  相似文献   

11.
J C Hansen  R Skalak  S Chien    A Hoger 《Biophysical journal》1997,72(5):2369-2381
A finite-element network model is used to investigate the influence of the topology of the red blood cell membrane skeleton on its macroscopic mechanical properties. Network topology is characterized by the number of spectrin oligomers per actin junction (phi a) and the number of spectrin dimers per self-association junction (phi s). If it is assumed that all associated spectrin is in tetrameric form, with six tetramers per actin junction (i.e., phi a = 6.0 and phi s = 2.0), then the topology of the skeleton may be modeled by a random Delaunay triangular network. Recent images of the RBC membrane skeleton suggest that the values for these topological parameters are in the range of 4.2 < phi a < 5.5 and 2.1 < phi s < 2.3. Model networks that simulate these realistic topologies exhibit values of the shear modulus that vary by more than an order of magnitude relative to triangular networks. This indicates that networks with relatively sparse nontriangular topologies may be needed to model the RBC membrane skeleton accurately. The model is also used to simulate skeletal alterations associated with hereditary spherocytosis and Southeast Asian ovalocytosis.  相似文献   

12.
Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15–18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200–300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.  相似文献   

13.
The development of avian red cell shape   总被引:1,自引:0,他引:1  
  相似文献   

14.
《Biorheology》1997,34(4-5):327-348
Two models of spectrin elasticity are developed and compared to experimental measurements of the red blood cell (RBC) membrane shear modulus through the use of an elastic finite element model of the RBC membrane skeleton. The two molecular models of spectrin are: (i) An entropic spring model of spectrin as a flexible chain. This is a model proposed by several previous authors. (ii) An elastic model of a helical coiled-coil which expands by increasing helical pitch. In previous papers, we have computed the relationship between the stiffness of a single spectrin molecule (K) and the shear modulus of a network (μ), and have shown that this behavior is strongly dependent upon network topology. For realistic network models of the RBC membrane skeleton, we equate μ to micropipette measurements of RBCs and predict K for spectrin that is consistent with the coiled-coil molecular model. The value of spectrin stiffness derived from the entropic molecular model would need to be at least 30 times greater to match the experimental results. Thus, the conclusion of this study is that a helical coiled-coil model for spectrin is more realistic than a purely entropic model.  相似文献   

15.
A finite element network model has been developed to predict the macroscopic elastic shear modulus and the area expansion modulus of the red blood cell (RBC) membrane skeleton on the basis of its microstructure. The topological organization of connections between spectrin molecules is represented by the edges of a random Delaunay triangulation, and the elasticity of an individual spectrin molecule is represented by the spring constant, K, for a linear spring element. The model network is subjected to deformations by prescribing nodal displacements on the boundary. The positions of internal nodes are computed by the finite element program. The average response of the network is used to compute the shear modulus (mu) and area expansion modulus (kappa) for the corresponding effective continuum. For networks with a moderate degree of randomness, this model predicts mu/K = 0.45 and kappa/K = 0.90 in small deformations. These results are consistent with previous computational models and experimental estimates of the ratio mu/kappa. This model also predicts that the elastic moduli vary by 20% or more in networks with varying degrees of randomness. In large deformations, mu increases as a cubic function of the extension ratio lambda 1, with mu/K = 0.62 when lambda 1 = 1.5.  相似文献   

16.
Transport of alpha- and beta-D-glucose by the intact human red cell   总被引:1,自引:0,他引:1  
A Carruthers  D L Melchior 《Biochemistry》1985,24(15):4244-4250
The kinetics of alpha- and beta-D-glucose mutarotation and the transport of these anomers by intact human red cells were determined at 0.6 and 36.6 degrees C. The mutarotation coefficients for alpha- and beta-D-glucose in cell-free tris(hydroxymethyl)aminomethane medium (pH 7.4) at 0.6 degrees C are (2.25 +/- 0.2) and (1.73 +/- 0.42) X 10(-3) min-1, respectively, and at 36.6 degrees C are (69 +/- 12) and (75 +/- 5) X 10(-3) min-1, respectively. These values are in good agreement with previous estimates. At 0.6 degrees C, the red cell contains no detectable mutarotase activity. Initial rates of sugar uptake were measured by using radiolabeled D-glucose and time courses of uptake by turbidimetry. The time courses of alpha- and beta-D-glucose and an equilibrium mixture of alpha- and beta-D-glucose infinite-cis entry are identical at 0.66 degrees C (n = 41) where negligible mutarotation is observed. The apparent Ki values for inhibition of radiolabeled D-glucose initial uptake by unlabeled alpha- or beta-D-glucose at 0.6 degrees C are identical (1.6 mM). The calculated Vmax parameters for uptake of the radiolabeled anomers at this temperature are also indistinguishable. The time courses of infinite-cis alpha- and beta-D-glucose uptake at 36.66 degrees C are identical (n = 40). While D-glucose mutarotation is more rapid at this temperature, the anomers of D-glucose are not transported differently by the red cell hexose transfer system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The mechanical properties of erythrocyte membrane composed of a membrane bilayer and membrane skeleton are considered. Two membrane models are described: the model of free boundaries (MFB) and the model of immobilized boundaries (MIB). In MFB, the skeleton is assumed to be attached to the bilayer at a finite number of points, whereas MIB allows the interaction of each spectrin filament with the bilayer along its whole length. For MFB an estimate was made of the mechanical strain generated in the membrane by sucking erythrocytes into a micropipette. The existence of the deformation threshold is demonstrated, below which no mechanical strain, except that of bending, appears in the membrane. Thus only deformations exceeding this threshold result in strain. The relationship between the applied tension and the height of erythrocyte "tongue" sucked into a micropipette was determined. The MIB characteristics correspond to the model of Evans: strains in the membrane are generated at any deformation, however small, i.e. the threshold is equal to zero. A basic feature of this model is quite a different distribution of the skeleton deformations in the membrane. A comparison of the theoretical models and experimental data demonstrated the possibility of either MFB or MIB occurring, depending on the characteristic measurement time.  相似文献   

18.
Summary Comparison of two inbred chicken lines (Fx > 99.9%) revealed significant differences in shape of the red blood cells (RBC). The length-width index was lower for both sexes in IC-line (1.46) when compared to CB-line chickens (1.88). Phenotypic expression of this character in F1 hybrids and both backcross groups corresponded to the common manifestations of the metric parameters. The index in F1 hybrid chickens deviated from intermediate values with the dominant tendency to oval RBC. An analysis of the segregating first backcross generation chickens did not show any association between RBC shape and the genotype in the blood group systems B, C, I, and D and the IgG allotypes. The differences in RBC shape were probably not associated with the survival of RBC in the blood circulation.  相似文献   

19.
The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton, which is a closed, twodimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette. The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration.  相似文献   

20.
The area expansion and the shear moduli of the free spectrin skeleton, freshly extracted from the membrane of a human red blood cell (RBC), are measured by using optical tweezers micromanipulation. An RBC is trapped by three silica beads bound to its membrane. After extraction, the skeleton is deformed by applying calibrated forces to the beads. The area expansion modulus K(C) and shear modulus mu(C) of the two-dimensional spectrin network are inferred from the deformations measured as functions of the applied stress. In low hypotonic buffer (25 mOsm/kg), one finds K(C) = 4.8 +/- 2.7 microN/m, mu(C) = 2.4 +/- 0.7 microN/m, and K(C)/mu(C) = 1.9 +/- 1.0. In isotonic buffer, one measures higher values for K(C), mu(C), and K(C)/mu(C), partly because the skeleton collapses in a high-ionic-strength environment. Some data concerning the time evolution of the mechanical properties of the skeleton after extraction and the influence of ATP are also reported. In the Discussion, it is shown that the measured values are consistent with estimates deduced from experiments carried out on the intact membrane and agree with theoretical and numerical predictions concerning two-dimensional networks of entropic springs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号