首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Many enteric pathogens are equipped with multiple cell adhesion factors which are important for host tissue colonization and virulence. Y. enterocolitica, a common food-borne pathogen with invasive properties, uses the surface proteins invasin and YadA for host cell binding and entry. In this study, we demonstrate unique cell adhesion and invasion properties of Y. enterocolitica serotype O:3 strains, the most frequent cause of human yersiniosis, and show that these differences are mainly attributable to variations affecting the function and expression of invasin in response to temperature. In contrast to other enteric Yersinia strains, invasin production in O:3 strains is constitutive and largely enhanced compared to other Y. enterocolitica serotypes, in which invA expression is temperature-regulated and significantly reduced at 37°C. Increase of invasin levels is caused by (i) an IS1667 insertion into the invA promoter region, which includes an additional promoter and RovA and H-NS binding sites, and (ii) a P98S substitution in the invA activator protein RovA rendering the regulator less susceptible to proteolysis. Both variations were shown to influence bacterial colonization in a murine infection model. Furthermore, we found that co-expression of YadA and down-regulation of the O-antigen at 37°C is required to allow efficient internalization by the InvA protein. We conclude that even small variations in the expression of virulence factors can provoke a major difference in the virulence properties of closely related pathogens which may confer better survival or a higher pathogenic potential in a certain host or host environment.  相似文献   

11.
12.
An essential virulence attribute for Yersinia enterocolitica and Yersinia pseudotuberculosis is the ability to invade the intestinal epithelium of mammals. The chromosomal invasin gene (inv) has been cloned from both of these Yersinia species, and the Y. pseudotuberculosis invasin has been well characterized (R. R. Isberg, D. L. Voorhis, and S. Falkow, Cell 50:769-778, 1987). Here we constructed TnphoA translational fusions to the Y. enterocolitica inv gene to identify, characterize, and localize the inv protein product in Escherichia coli. The cloned Y. enterocolitica inv locus encoded a unique protein of ca. 92 kilodaltons when expressed in minicells. A protein of comparable size was detected in immunoblots by using monoclonal antibodies directed against the Y. pseudotuberculosis invasin. This protein, which we also refer to as invasin, promoted both attachment to and invasion of cultured epithelial cells. These two functions were not genetically separable by insertional mutagenesis. We determined that the Y. enterocolitica invasin was localized on the outer membrane and that it was exposed on the bacterial cell surface, which may have implications for how invasin functions to mediate invasion.  相似文献   

13.
14.
15.
16.
17.
周冬生  杨瑞馥 《生命科学》2010,(11):1092-1096
鼠疫菌通过一系列转录调控子(如CRP、PhoP、RovA和Fur)控制着一些关键毒力因子(如Pla、强毒力岛、III型分泌系统等)的基因表达。鼠疫菌可感应宿主体内信号刺激,紧密调控毒力因子的表达。在这个紧密调控过程中,调控子、毒力相关基因构成了一个动态网络。鼠疫菌在从假结核菌祖先演化的进程中,基因表达调控网络的重塑在鼠疫菌毒力进化过程中发挥着不可取代的作用。  相似文献   

18.
19.
20.
Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein, designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y. enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y. enterocolitica, Y. pseudotuberculosis infection of bone marrow-derived dendritic cells does not lead to increased cell death. However, death of Y. pseudotuberculosis-infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ. We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal systemic virulence of this bacterial pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号