首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Misfolding is an inherent and potentially problematic propensity of proteins. Misfolded proteins tend to aggregate and the deposition of aggregated proteins is associated with a variety of highly debilitating diseases known as amyloidoses. Protein misfolding and aggregation is also increasingly recognized as the underlying cause of other health problems, including atherosclerosis and immunogenicity of biopharmaceuticals. This raises the question how nature deals with the removal of obsolete proteins in order to avoid their accumulation and disease. In recent years two proteases, tPA and factor XII, have been identified that specifically recognize aggregates of misfolded proteins. We here review these discoveries that have uncovered new roles for the fibrinolytic system and the contact activation system beyond haemostasis.  相似文献   

2.
Conformational diseases result from the failure of a specific protein to fold into its correct functional state. The misfolded proteins can lead to the toxic aggregation of proteins. Protein misfolding in conformational diseases often displays a threshold behavior characterized by a sudden shift between nontoxic to toxic levels of misfolded proteins. In some conformational diseases, evidence suggests that misfolded proteins interact with bystander proteins (unfolded and native folded proteins), eliciting a misfolded phenotype. These bystander isomers would follow their normal physiological pathways in absence of misfolded proteins. In this article, we present a general mechanism of bystander and misfolded protein interaction which we have used to investigate how the threshold behavior in protein misfolding is triggered in conformational diseases. Using a continuous flow reactor model of the endoplasmic reticulum, we found that slight changes in the bystander protein residence time in the endoplasmic reticulum or the ratio of basal misfolded to bystander protein inflow rates can trigger the threshold behavior in protein misfolding. Our analysis reveals three mechanisms to rescue bystander proteins in conformational diseases. The results of our model can now help direct experiments to understand the threshold behavior and develop therapeutic strategies targeting the modulation of conformational diseases.  相似文献   

3.
Cells may sense heat shock via the accumulation of thermally misfolded proteins. To explore this possibility, we determined the effect of protein misfolding on gene expression in the absence of temperature changes. The imino acid analog azetidine-2-carboxylic acid (AZC) is incorporated into protein competitively with proline and causes reduced thermal stability or misfolding. We found that adding AZC to yeast at sublethal concentrations sufficient to arrest proliferation selectively induced expression of heat shock factor-regulated genes to a maximum of 27-fold and that these inductions were dependent on heat shock factor. AZC treatment also selectively repressed expression of the ribosomal protein genes, another heat shock factor-dependent process, to a maximum of 20-fold. AZC treatment thus strongly and selectively activates heat shock factor. AZC treatment causes this activation by misfolding proteins. Induction of HSP42 by AZC treatment required protein synthesis; treatment with ethanol, which can also misfold proteins, activated heat shock factor, but treatment with canavanine, an arginine analog less potent than AZC at misfolding proteins, did not. However, misfolded proteins did not strongly induce the stress response element regulon. We conclude that misfolded proteins are competent to specifically trigger activation of heat shock factor in response to heat shock.  相似文献   

4.
While the formation of kinetically trapped misfolded structural states by membrane proteins is related to a number of diseases, relatively few studies of misfolded membrane proteins in their purified state have been carried out and few methods for refolding such proteins have been reported. In this paper, misfolding of the trimeric integral membrane protein diacylglycerol kinase (DAGK) is documented and a method for refolding the protein is presented; 65 single-cysteine mutants of DAGK were examined. A majority were found to have lower-than-expected activities when purified into micellar solutions, with additional losses in activity often being observed following membrane reconstitution. A variety of evidence indicates that the low activities observed for most of these mutants results from kinetically based misfolding of the protein, with misfolding often being manifested by the formation of aberrant oligomeric states. A method referred to as "reconstitutive refolding" for correcting misfolded DAGK is presented. This method is based upon reconstituting DAGK into multilamellar POPC vesicles by dialyzing the detergent dodecylphosphocholine out of mixed micellar mixtures. For 55 of the 65 mutants tested, there was a gain of DAGK activity during reconstitutive refolding. In 33 of these cases, the gain in activity was greater than 2-fold. The refolding results for cysteine replacement mutants at DAGK sites known to be highly conserved provide teleological insight into whether sites are conserved, because they are critical for catalysis, for maintenance of the proper folding pathway, or for some other reason.  相似文献   

5.
Some of the most prevalent human degenerative diseases appear as a result of the misfolding and aggregation of proteins. Compelling evidence suggest that misfolded protein aggregates play an important role in cell dysfunction and tissue damage, leading to the disease. Prion protein (Prion diseases), amyloid-beta (Alzheimer's disease), alpha-synuclein (Parkinson's disease), Huntingtin (Huntington's disease), serum amyloid A (AA amyloidosis) and islet amyloid polypeptide (type 2 diabetes) are some of the proteins that trigger disease when they get misfolded. The recent understanding of the crucial role of misfolded proteins as well as the structural requirements and mechanism of protein misfolding have raised the possibility that these diseases may be transmissible by self-propagation of the protein misfolding process in a similar way as the infamous prions transmit prion diseases. Future research in this field should aim to clarify this possibility and translate the knowledge of the basic disease mechanisms into development of novel strategies for early diagnosis and efficient treatment.  相似文献   

6.
Rao DK  Prabhu NP  Bhuyan AK 《Biochemistry》2006,45(27):8393-8401
This work describes an extensively misfolded kinetic intermediate in the folding of horse ferrocytochrome c. Under absolute native conditions, the alkali-unfolded protein liganded with carbon-monoxide exhibits misfolding. The misfolded product, apparently an off-pathway intermediate, requires large-scale unfolding in order to have a chance to fold correctly to the native state. The rate of unfolding of the misfolded intermediate limits the overall rate of protein folding. The high level of observed misfolding possibly results from a failure of the polypeptide chain to achieve by stochastic search the transition state relevant for successful folding. Such misfolding may be analogous to the failure of a sizable set of proteins in the intracellular milieu to fold to the functionally active native state.  相似文献   

7.
Nakamura T  Gu Z  Lipton SA 《Aging cell》2007,6(3):351-359
Glutamatergic hyperactivity, associated with Ca2+ influx and consequent production of nitric oxide (NO), is potentially involved in both normal brain aging and age-related neurodegenerative disorders. Many neurodegenerative diseases are characterized by conformational changes in proteins that result in their misfolding and aggregation. Normal protein degradation by the ubiquitin-proteasome system can prevent accumulation of aberrantly folded proteins. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. In particular, molecular chaperones - such as protein disulfide isomerase, glucose regulated protein 78, and heat shock proteins - can provide neuroprotection from misfolded proteins by facilitating proper folding and thus preventing aggregation. Here, we present evidence for the hypothesis that NO contributes to normal brain aging and degenerative conditions by S-nitrosylating specific chaperones that would otherwise prevent accumulation of misfolded proteins.  相似文献   

8.
Fang NN  Ng AH  Measday V  Mayor T 《Nature cell biology》2011,13(11):1344-1352
Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with numerous aggregation diseases. Several protein quality control mechanisms degrade non-native proteins by the ubiquitin-proteasome system. Here, we use quantitative mass spectrometry to demonstrate that heat-shock triggers a large increase in the level of ubiquitylation associated with misfolding of cytosolic proteins. We discover that the Hul5 HECT ubiquitin ligase participates in this heat-shock stress response. Hul5 is required to maintain cell fitness after heat-shock and to degrade short-lived misfolded proteins. In addition, localization of Hul5 in the cytoplasm is important for its quality control function. We identify potential Hul5 substrates in heat-shock and physiological conditions to reveal that Hul5 is required for ubiquitylation of low-solubility cytosolic proteins including the Pin3 prion-like protein. These findings indicate that Hul5 is involved in a cytosolic protein quality control pathway that targets misfolded proteins for degradation.  相似文献   

9.
Protein misfolding and aggregation are the very first and critical steps in development of various neurodegenerative disorders, including Parkinson’s disease, induced by misfolding of α-synuclein. Thus, elucidating properties of proteins in misfolded states and understanding the mechanisms of their assembly into the disease prone aggregates are critical for the development of rational approaches to prevent protein misfolding-mediated pathologies. To accomplish this goal and as a first step to elucidate the mechanism of α-synuclein misfolding, we applied single-molecule force spectroscopy capable of detecting protein misfolding. We immobilized α-synuclein molecules at their C-termini at the atomic force microscope tips and substrate surfaces, and measured the interaction between the proteins by probing the microscope tip at various locations on the surface. Using this approach, we detected α-synuclein misfolded states by enhanced interprotein interaction. We used a dynamics force spectroscopy approach to measure such an important characteristic of dimers of misfolded α-synuclein as their lifetimes. We found that the dimer lifetimes are in the range of seconds and these values are much higher than the characteristics for the dynamics of the protein in monomeric state. These data show that compared to highly dynamic monomeric forms, α-synuclein dimers are much more stable and thus can serve as stable nuclei for the formation of multimeric and aggregated forms of α-synuclein. Importantly, two different lifetimes were observed for the dimers, suggesting that aggregation can follow different pathways that may lead to different aggregated morphologies of α-synuclein.  相似文献   

10.
Conformational or misfolding diseases are a large class of devastating human disorders associated with protein misfolding and aggregation. Most conformational diseases are caused by a combination of genetic and environmental factors, suggesting that spontaneous events can destabilize the protein involved in the pathology or impair the clearance mechanisms of misfolded aggregates. Aging is one of the risk factors associa-ted to these events, and the clinical relevance of conformational disorders is growing dramatically, as they begin to reach epidemic proportions due to increases in mean lifespan. Currently, there are no effective strategies to slow or prevent these diseases. Intrabodies are promising therapeutic agents for the treatment of misfolding diseases, because of their virtually infinite ability to specifically recognize the different conformations of a protein, including pathological isoforms, and because they can be targeted to the potential sites of aggregation (both intra- and extracellular sites). These molecules can work as neutralizing agents against amylo-idogenic proteins by preventing their aggregation, and/or as molecular shunters of intracellular traffic by re-routing the protein from its potential aggregation site. The fast-developing field of recombinant antibody technology provides intrabodies with enhanced binding specificity and stability, together with lower immunogenicity, for use in a clinical setting. This review provides an update on the applications of intrabodies in misfolding diseases, with particular emphasis on an evaluation of their multiple and feasible modes of action.  相似文献   

11.
Misfolded aggregates present in amyloid fibrils are associated with various diseases known as "protein misfolding" disorders. Among them, prion diseases are unique in that the pathology can be transmitted by an infectious process involving an unprecedented agent known as a "prion". Prions are infectious proteins that can transmit biological information by propagating protein misfolding and aggregation. The molecular mechanism of prion conversion has a striking resemblance to the process of amyloid formation, suggesting that misfolded aggregates have an inherent ability to be transmissible. Intriguing recent data suggest that other protein misfolding disorders might also be transmitted by a prion-like infectious process.  相似文献   

12.
Hirano N  Sawasaki T  Tozawa Y  Endo Y  Takai K 《Proteins》2006,64(2):343-354
It has been proposed that eukaryotic translation systems have a greater capacity for cotranslational folding of domains than prokaryotic translation systems, which reduces interdomain misfolding in multidomain proteins and, therefore, leads to tolerance for random recombination of domains. However, there has been a controversy as to whether prokaryotic and eukaryotic translation systems differ in the capacity for cotranslational domain folding. Here, to examine whether these systems differ in the tolerance for the random domain recombination, we systematically combined six proteins, out of which four are soluble and two are insoluble when produced in an Escherichia coli and a wheat germ cell-free protein synthesis systems, to construct a fusion protein library. Forty out of 60 two-domain proteins and 114 out of 120 three-domain proteins were more soluble when produced in the wheat system than in the E. coli system. Statistical analyses of the solubilities and the activities indicated that, in the wheat system but not in the E. coli system, the two soluble domains comprised mainly of beta-sheets tend to avoid interdomain misfolding and to fold properly even at the neighbor of the misfolded domains. These results demonstrate that a eukaryotic system permits the concomitance of a wider variety of domains within a single polypeptide chain than a prokaryotic system, which is probably due to the difference in the capacity for cotranslational folding. This difference is likely to be related to the postulated difference in the tolerance for random recombination of domains.  相似文献   

13.
The ability of proteins to fold into complex three-dimensional shapes is truly amazing. Given the difficulty of the reaction it is perhaps unsurprising that many proteins in vivo are unable to fold correctly. These misfolded proteins are generally recognized by the cell's quality control machinery and dealt with through degradation. However in an increasing number of diseases, such as Huntington's, Alzheimer's and alpha1-antitrypsin deficiency, misfolded protein accumulates both within and outside the cell. This aggregated protein is able to evade the normal cellular responses and in some cases even disable it. In this review we present an overview of protein misfolding and examine recent data which is beginning to reveal the mechanisms by which protein aggregates are toxic to cells.  相似文献   

14.
Various human neurodegenerative disorders are associated with processes that involve misfolding of polypeptide chains. These so-called protein misfolding disorders include Alzheimer's and Parkinson's diseases and an increasing number of inherited syndromes that affect neurons involved in motor control circuits throughout the central nervous system. The reasons behind the particular susceptibility of neurons to misfolded proteins are currently not known. The main function of a class of proteins known as molecular chaperones is to prevent protein misfolding and aggregation. Although neuronal cells contain the major known classes of molecular chaperones, central-nervous-system-specific chaperones that maintain the neuronal proteome free from misfolded proteins are not well defined. In this study, we assign a novel molecular chaperone activity to the protein sacsin responsible for autosomal recessive spastic ataxia of Charlevoix-Saguenay, a degenerative disorder of the cerebellum and spinal cord. Using purified components, we demonstrate that a region of sacsin that contains a segment with homology to the molecular chaperone Hsp90 is able to enhance the refolding efficiency of the model client protein firefly luciferase. We show that this region of sacsin is highly capable of maintaining client polypeptides in soluble folding-competent states. Furthermore, we demonstrate that sacsin can efficiently cooperate with members of the Hsp70 chaperone family to increase the yields of correctly folded client proteins. Thus, we have identified a novel chaperone directly involved in a human neurodegenerative disorder.  相似文献   

15.
Diseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs. Here we report the evolution of a reagent that can selectively capture diverse misfolded proteins by interacting with a common supramolecular feature of protein aggregates. By coupling this enrichment tool with protein specific immunoassays, diverse misfolded proteins and sub-femtomole amounts of oligomeric aggregates can be detected in complex biological matrices. We anticipate that this near-universal approach for quantitative misfolded protein detection will become a useful research tool for better understanding amyloidogenic protein pathology as well as serve as the basis for early detection of misfolded protein diseases.  相似文献   

16.
Most loss-of-function mutations of the glycoprotein hormone receptors have been found to be due to the misfolding of the receptor, resulting in its intracellular retention and, therefore, decreased cell surface expression. Chaperone proteins within the endoplasmic reticulum play an essential role in facilitating the folding of newly synthesized proteins and in recognizing and segregating misfolded proteins, thereby preventing their transit to the Golgi. The present study was conducted to begin to elucidate the role of chaperone proteins in the folding of the glycoprotein hormone receptors and misfolded mutants thereof. Toward this end, we examined the potential associations of calnexin, calreticulin, Grp94, BiP, ERp57, and protein disulfide-isomerase with each of the three glycoprotein hormone receptors. Calnexin, calreticulin, and protein disulfide-isomerase were found to associate with the immature forms of all three wild-type (wt) glycoprotein hormone receptors. As examples of misfolded glycoprotein hormone receptors, we studied two human LH receptor (hLHR) loss-of-function mutants that we show to be expressed predominantly as immature forms that are retained intracellularly. Significantly, the patterns of chaperone protein associations with the misfolded hLHR mutants differ from that observed with the wt hLHR. Furthermore, and unexpectedly, the chaperone protein associations were found to differ between the two misfolded hLHR mutants. Altogether, our studies show that although the same chaperone proteins are used by the three wt glycoprotein hormone receptors, different chaperone proteins associate with misfolded mutants thereof, and the specificity of interactions can vary between mutants, most likely reflecting the different stages of folding they achieve before being targeted for degradation.  相似文献   

17.
Single protein misfolding events captured by atomic force microscopy.   总被引:6,自引:0,他引:6  
Using single protein atomic force microscopy (AFM) techniques we demonstrate that after repeated mechanical extension/relaxation cycles, tandem modular proteins can misfold into a structure formed by two neighboring modules. The misfolding is fully reversible and alters the mechanical topology of the modules while it is about as stable as the original fold. Our results show that modular proteins can assume a novel misfolded state and demonstrate that AFM is able to capture, in real time, rare misfolding events at the level of a single protein.  相似文献   

18.
Huntington disease (HD) is one of several fatal neurodegenerative disorders associated with misfolded proteins. Here, we report a novel method for the sensitive detection of misfolded huntingtin (HTT) isolated from the brains of transgenic (Tg) mouse models of HD and humans with HD using an amyloid seeding assay (ASA), which is based on the propensity of misfolded proteins to act as a seed and shorten the nucleation-associated lag phase in the kinetics of amyloid formation in vitro. Using synthetic polyglutamine peptides as the substrate for amyloid formation, we found that partially purified misfolded HTT obtained from end-stage brain tissue of two Tg HD mouse models and brain tissue of post-mortem human HD patients was capable of specifically accelerating polyglutamine amyloid formation compared with unseeded reactions and controls. Alzheimer and prion disease brain tissues did not do so, demonstrating the specificity of the ASA. It is unclear whether early intermediates or later conformational species in the protein misfolding process act as seeds in the ASA for HD. However, we were able to detect misfolded protein in the brains of YAC128 mice early in disease pathogenesis (11 weeks of age), whereas large inclusion bodies have not been observed in the brains of these mice by histology until 78 weeks of age, much later in the pathogenic process. The sensitive detection of misfolded HTT protein early in the disease pathogenesis in the YAC128 Tg mouse model strengthens the argument for a causative role of protein misfolding in HD.  相似文献   

19.
Neurodegenerative diseases are characterized by the aggregation of misfolded proteins in the brain. Among these disorders are the prion diseases, which are transmissible, and in which the misfolded proteins (“prions”) are also the infectious agent. Increasingly, it appears that misfolded proteins in Alzheimer and Parkinson diseases and the tauopathies also propagate in a “prion-like” manner. However, the association between prion formation, spread, and neurotoxicity is not clear. Recently, we showed that in prion disease, protein misfolding leads to neurodegeneration through dysregulation of generic proteostatic mechanisms, specifically, the unfolded protein response. Genetic and pharmacological manipulation of the unfolded protein response was neuroprotective despite continuing prion replication, hence dissociating this from neurotoxicity. The data have clear implications for treatment across the spectrum of these disorders, targeting pathogenic processes downstream of protein misfolding.  相似文献   

20.
Misfolding and aggregation of proteins is a common thread linking a number of important human health problems. The misfolded and aggregated proteins are inducers of cellular stress and activators of immunity in neurodegenerative diseases. They might possess clear cytotoxic properties, being responsible for the dysfunction and loss of cells in the affected organs. Despite the crucial importance of protein misfolding and abnormal interactions, very little is currently known about the molecular mechanism underlying these processes. Factors that lead to protein misfolding and aggregation in vitro are poorly understood, not to mention the complexities involved in the formation of protein nanoparticles with different morphologies (e.g., the nanopores) in vivo. A better understanding of the molecular mechanisms of misfolding and aggregation might facilitate development of the rational approaches to prevent pathologies mediated by protein misfolding. The conventional tools currently available to researchers can only provide an averaged picture of a living system, whereas much of the subtle or short-lived information is lost. We believe that the existing and emerging nanotools might help solving these problems by opening the entirely novel pathways for the development of early diagnostic and therapeutic approaches. This article summarizes recent advances of the nanoscience in detection and characterization of misfolded protein conformations. Based on these findings, we outline our view on the nanoscience development towards identification intracellular nanomachines and/or multicomponent complexes critically involved in protein misfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号