首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Death receptor 5 (DR5) is a death domain-containing transmembrane receptor that triggers apoptosis upon binding to its ligand or when overexpressed. Its expression is induced by certain small molecule drugs, including celecoxib, through mechanisms that have not been fully elucidated. The current study has revealed a novel ERK/ribosomal S6 kinase (RSK)-dependent mechanism that regulates DR5 expression primarily using celecoxib as a DR5 inducer. Both C/EBP homologous protein (CHOP) and Elk1 are required for celecoxib-induced DR5 expression based on promoter deletion and mutation analysis and siRNA-mediated gene silencing results. Co-expression of both CHOP and Elk1 exhibited enhanced effects on increasing DR5 promoter activity and DR5 expression, indicating that CHOP and Elk1 co-operatively regulate DR5 expression. Because Elk1 is an ERK-regulated protein, we accordingly found that celecoxib increased the levels of phosphorylated ERK1/2, RSK2, and Elk1. Inhibition of either ERK signaling with a MEK inhibitor or ERK1/2 siRNA, or RSK2 signaling with an RSK2 inhibitor or RSK2 siRNA abrogated DR5 up-regulation by celecoxib as well as other agents. Moreover, these inhibitions suppressed celecoxib-induced CHOP up-regulation. Thus, ERK/RSK-dependent, CHOP and Elk1-mediated mechanisms are critical for DR5 induction. Additionally, celecoxib increased CHOP promoter activity in an ATF4-dependent manner, and siRNA-mediated blockade of ATF4 abrogated both CHOP induction and DR5 up-regulation, indicating that ATF4 is involved in celecoxib-induced CHOP and DR5 expression. Collectively, we conclude that small molecules such as celecoxib induce DR5 expression through activating ERK/RSK signaling and subsequent Elk1 activation and ATF4-dependent CHOP induction.  相似文献   

3.
Pre-clinical studies have demonstrated that farnesyltransferase inhibitors (FTIs) induce growth arrest or apoptosis in various human cancer cells independently of Ras mutations. However, the underlying mechanism remains unknown. Death receptor 5 (DR5) is a pro-apoptotic protein involved in mediating the extrinsic apoptotic pathway. Its role in FTI-induced apoptosis has not been reported. In this study, we investigated the modulation of DR5 by the FTI lonafarnib and the involvement of DR5 up-regulation in FTI-induced apoptosis. Lonafarnib activated caspase-8 and its downstream caspases, whereas the caspase-8-specific inhibitor benzyloxycarbonyl-Ile-Glu(methoxy)-Thr-Asp(methoxy)-fluoromethyl ketone or small interfering RNA abrogated lonafarnib-induced apoptosis, indicating that lonafarnib induces caspase-8-dependent apoptosis. Lonafarnib up-regulated DR5 expression, increased cell-surface DR5 distribution, and enhanced tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Overexpression of a dominant-negative Fas-associated death domain mutant or silencing of DR5 expression using small interfering RNA attenuated lonafarnib-induced apoptosis. These results indicate a critical role of the DR5-mediated extrinsic apoptotic pathway in lonafarnib-induced apoptosis. By analyzing the DR5 promoter, we found that lonafarnib induced a CCAAT/enhancer-binding protein homologous protein (CHOP)-dependent transactivation of the DR5 promoter. Lonafarnib increased CHOP expression, whereas silencing of CHOP expression abrogated lonafarnib-induced DR5 expression. These results thus indicate that lonafarnib induces CHOP-dependent DR5 up-regulation. We conclude that CHOP-dependent DR5 up-regulation contributes to lonafarnib-induced apoptosis.  相似文献   

4.
TRAIL resistance in many cancer cells is one of the major problems in TRAIL-based cancer therapy. Thus, the agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are strictly needed for the improvement of anti-cancer effect of TRAIL. Acrolein is a byproduct of lipid peroxidation, which has been involved in pulmonary, cardiac and neurodegenerative diseases. We investigated whether acrolein, an α,β-unsaturated aldehyde, can potentiate TRAIL-induced apoptosis in human renal cancer cells. The combined treatment with acrolein and TRAIL significantly induced apoptosis, and stimulated of caspase-3 activity, DNA fragmentation, and cleavage of PARP. We found that acrolein down-regulated the protein level of Bcl-2 and Bcl-2 overexpression inhibited the cell death induced by the combined treatment with acrolein and TRAIL. In addition, acrolein up-regulated C/EBP homologous protein (CHOP) and TRAIL death receptor 5 (DR5) and down-regulation of CHOP or DR5 expression using the respective small interfering RNA significantly attenuated the apoptosis induced by acrolein plus TRAIL. Interestingly, pretreatment with an antioxidant, N-acetylcysteine (NAC), inhibited not only CHOP and DR5 up-regulation but also the cell death induced by acrolein plus TRAIL. Taken together, our results demonstrated that acrolein enhances TRAIL-induced apoptosis in Caki cells through down-regulation of Bcl-2 and ROS dependent up-regulation of DR5.  相似文献   

5.
It has been shown that excess stress to the endoplasmic reticulum (ER) triggers apoptosis, but the mechanisms underlying these processes remain unclear. We and others have reported previously that DR5 expression is up-regulated in thapsigargin (THG)-treated human cancer cells. Here, we provide evidence that CHOP is involved in THG up-regulation of DR5, which is a critical step for ER stress-induced apoptosis in human cancer cells. In human colon cancer HCT116 cells, knockdown of DR5 by siRNA blocked THG-induced Bax conformational change along with caspase-3 activation and cell death. Moreover, inhibition of CHOP expression attenuated DR5 up-regulation and apoptosis induced by THG, whereas ectopic expression of DR5 restored the sensitivity of CHOP siRNA-transfected cells to THG-induced apoptosis. In addition to HCT116 cells, inhibition of CHOP or DR5 induction also attenuated THG-induced cell death in other cancer cell lines including LNCaP, A2780S, and DU145, indicating that CHOP and DR5 are critical for ER stress-mediated apoptosis in human carcinoma cells. Furthermore, we identified a potential CHOP-binding site in the 5'-flanking region of the DR5 gene. Mutation of this site abrogated the enhanced reporter activity in response to THG treatment. Together, our findings suggest that CHOP regulates ER stress-induced apoptosis, at least in part, through enhancing DR5 expression in some types of human cancer cells.  相似文献   

6.
Whether celastrol, a triterpene from traditional Chinese medicine, can modulate the anticancer effects of TRAIL, the cytokine that is currently in clinical trial, was investigated. As indicated by assays that measure plasma membrane integrity, phosphatidylserine exposure, mitochondrial activity, and activation of caspase-8, caspase-9, and caspase-3, celastrol potentiated the TRAIL-induced apoptosis in human breast cancer cells, and converted TRAIL-resistant cells to TRAIL-sensitive cells. When examined for its mechanism, we found that the triterpene down-regulated the expression of cell survival proteins including cFLIP, IAP-1, Bcl-2, Bcl-xL, survivin, and XIAP and up-regulated Bax expression. In addition, we found that celastrol induced the cell surface expression of both the TRAIL receptors DR4 and DR5. This increase in receptors was noted in a wide variety of cancer cells including breast, lung, colorectal, prostate, esophageal, and pancreatic cancer cells, and myeloid and leukemia cells. Gene silencing of the death receptor abolished the effect of celastrol on TRAIL-induced apoptosis. Induction of the death receptor by the triterpenoid was found to be p53-independent but required the induction of CAAT/enhancer-binding protein homologous protein (CHOP), inasmuch as gene silencing of CHOP abolished the induction of DR5 expression by celastrol and associated enhancement of TRAIL-induced apoptosis. We found that celastrol also induced reactive oxygen species (ROS) generation, and ROS sequestration inhibited celastrol-induced expression of CHOP and DR5, and consequent sensitization to TRAIL. Overall, our results demonstrate that celastrol can potentiate the apoptotic effects of TRAIL through down-regulation of cell survival proteins and up-regulation of death receptors via the ROS-mediated up-regulation of CHOP pathway.  相似文献   

7.
8.
9.

Background

α-TEA (RRR-α-tocopherol ether-linked acetic acid analog), a derivative of RRR-α-tocopherol (vitamin E) exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in α-TEA induced apoptosis in human breast cancer cells.

Methodology/Principal Findings

α-TEA induces endoplasmic reticulum (ER) stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP) as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78), phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2α), and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i) α-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii) α-TEA downregulation of c-FLIP (L) protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP''s inhibition of caspase-8; and (iii) α-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling.

Conclusion

Taken together, ER stress plays an important role in α-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.  相似文献   

10.
11.
12.
13.
20(S)-protopanaxadiol (PPD)-type ginsenosides are generally believed to be the most pharmacologically active components of Panax ginseng. These compounds induce apoptotic cell death in various cancer cells, which suggests that they have anti-cancer activity. Anti-angiogenesis is a promising therapeutic approach for controlling angiogenesis-related diseases such as malignant tumors, age-related macular degeneration, and atherosclerosis. Studies showed that 20(S)-PPD at low concentrations induces endothelial cell growth, but in our present study, we found 20(S)-PPD at high concentrations inhibited cell growth and mediated apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism by which high concentrations of 20(S)-PPD mediate endothelial cell apoptosis remains elusive. The present current study investigated how 20(S)-PPD induces apoptosis in HUVECs for the first time. We found that caspase-9 and its downstream caspase, caspase-3, were cleaved into their active forms after 20(S)-PPD treatment. Treatment with 20(S)-PPD decreased the level of Bcl-2 expression but did not change the level of Bax expression. 20(S)-PPD induced endoplasmic reticulum stress in HUVECs and stimulated UPR signaling, initiated by protein kinase R-like endoplasmic reticulum kinase (PERK) activation. Total protein expression and ATF4 nuclear import were increased, and CEBP-homologous protein (CHOP) expression increased after treatment with 20(S)-PPD. Furthermore, siRNA-mediated knockdown of PERK or ATF4 inhibited the induction of CHOP expression and 20(s)-PPD-induced apoptosis. Collectively, our findings show that 20(S)-PPD inhibits HUVEC growth by inducing apoptosis and that ATF4 expression activated by the PERK-eIF2α signaling pathway is essential for this process. These findings suggest that high concentrations of 20(S)-PPD could be used to treat angiogenesis-related diseases.  相似文献   

14.
15.
16.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

17.
Recent studies have revealed a role of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the regulation of RPE cell activity and survival. Herein, we examined the mechanisms by which the UPR modulates apoptotic signaling in human RPE cells challenged with cigarette smoking extract (CSE). Our results show that CSE exposure induced a dose- and time-dependent increase in ER stress markers, enhanced reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis of RPE cells. These changes were prevented by the anti-oxidant NAC or chemical chaperone TMAO, suggesting a close interaction between oxidative and ER stress in CSE-induced apoptosis. To decipher the role of the UPR, overexpression or down-regulation of XBP1 and CHOP genes was manipulated by adenovirus or siRNA. Overexpressing XBP1 protected against CSE-induced apoptosis by reducing CHOP, p-p38, and caspase-3 activation. In contrast, XBP1 knockdown sensitized the cells to CSE-induced apoptosis, which is likely through a CHOP-independent pathway. Surprisingly, knockdown of CHOP reduced p-eIF2α and Nrf2 resulting in a marked increase in caspase-3 activation and apoptosis. Furthermore, Nrf2 inhibition increased ER stress and exacerbated cell apoptosis, while Nrf2 overexpression reduced CHOP and protected RPE cells. Our data suggest that although CHOP may function as a pro-apoptotic gene during ER stress, it is also required for Nrf2 up-regulation and RPE cell survival. In addition, enhancing Nrf2 and XBP1 activity may help reduce oxidative and ER stress and protect RPE cells from cigarette smoke-induced damage.  相似文献   

18.
19.
ω-Hydroxyundec-9-enoic acid (ω-HUA), a hydroxyl unsaturated fatty acid derivative, is involved in the antifungal activity of wild rice (Oryza officinalis). Here, we investigated the anti-cancer activity of ω-HUA on a non-small cell lung cancer (NSCLC) cell line. ω-HUA increased apoptosis and induced cleavages of caspase-6, caspase-9, and poly (ADP-ribose) polymerase (PARP). ω-HUA treatment significantly induced endoplasmic reticulum (ER) stress response. Suppression of CHOP expression and inhibiting ER stress by 4-phenylbutyrate (4-PBA) significantly attenuated the ω-HUA treatment-induced activation of caspase-6, caspase-9, and PARP, and subsequent apoptotic cell death, indicating a role for ER stress in ω-HUA-induced apoptosis. In addition, cells subjected to ω-HUA exhibited significantly increased quantity of reactive oxygen species (ROS), and the ROS scavenger N-acetyl-l-cysteine (NAC) inhibited ω-HUA-induced apoptotic cell death and ER stress signals, indicating a role for ROS in ER stress-mediated apoptosis in ω-HUA-treated cells. Taken together, these results suggest that sequential ROS generation and ER stress activation are critical in ω-HUA treatment-induced apoptosis and that ω-HUA represents a promising candidate for NSCLC treatment.  相似文献   

20.
The TRAIL/death-receptor signaling pathway has been considered a promising target for selective cancer therapy, although some malignant tumors exhibit TRAIL resistance. We previously found that isoflavonoid enhanced TRAIL-induced apoptosis in TRAIL-resistant cells, which is achieved through up-regulation of death receptor 5 (DR5). In our screening program targeting DR5 promoter enhancement activity, activity-guided fractionations of the extract of Catimbium speciosum led to the isolation of six compounds. Of the isolates, cardamomin (6), the most potent compound, enhanced the expressions of DR5 and DR4 and decreased the Bcl-xL level in TRAIL-resistant DLD1 cells. The combination of 6 and TRAIL synergistically enhanced TRAIL-induced apoptosis against TRAIL-resistant cells upon the activation of caspase-8, 9, and 3. In addition, enhancement of apoptosis by 6 was inhibited by human recombinant DR5/Fc and DR4/Fc chimera proteins, TRAIL-neutralizing fusion proteins, indicating that 6 sensitize TRAIL-resistant cells to TRAIL through the induction of DR5 and DR4. Also, up-regulation of DR5 by 6 paralleled that of CCAAT/enhancer-binding protein-homologous protein (CHOP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号