首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The molecular structure of the complex between a minor groove binding drug (netropsin) and the DNA dodecamer d(CGCGATATCGCG) has been solved and refined by single-crystal X-ray diffraction analysis to a final R factor of 20.0% to 2.4-A resolution. The crystal is similar to that of the other related dodecamers with unit cell dimensions of a = 25.48 A, b = 41.26 A, and c = 66.88 A in the space group P2(1)2(1)2(1). In the complex, netropsin binds to the central ATAT tetranucleotide segment in the narrow minor groove of the dodecamer B-DNA double helix as expected. However, in the structural refinement the drug is found to fit the electron density in two orientations equally well, suggesting the disordered model. This agrees with the results from solution studies (chemical footprinting and NMR) of the interactions between minor groove binding drugs (e.g., netropsin and distamycin A) and DNA. The stabilizing forces between drug and DNA are provided by a combination of ionic, van der Waals, and hydrogen-bonding interactions. No bifurcated hydrogen bond is found between netropsin and DNA in this complex due to the unique dispositions of the hydrogen-bond acceptors (N3 of adenine and O2 of thymine) on the floor of the DNA minor groove. Two of the four AT base pairs in the ATAT stretch have low propeller twist angles, even though the DNA has a narrow minor groove. Alternating helical twist angles are observed in the ATAT stretch with lower twist in the ApT steps than in the TpA step.  相似文献   

3.
The mobility shift assay was used to study the competition of the minor groove binder distamycin A with either an Antennapedia homeodomain (Antp HD) peptide or derivatives of a fushi tarazu homeodomain (ftz HD) peptide for their AT-rich DNA binding site. The results show that distamycin and the homeodomain peptides compete under the conditions: (i) preincubation of DNA with distamycin and subsequent addition of HD peptide; (ii) simultaneous incubation of DNA with distamycin and HD peptide; and (iii) preincubation of DNA with HD peptide and subsequent addition of distamycin. There is also competition when using a peptide which lacks the N-terminal arm of ftz HD that is involved in contacts in the minor groove. It is proposed that the protein's binding affinity is diminished by distamycin-induced conformational changes of the DNA. The feasibility of the propagation of conformational changes upon binding in the minor groove is also shown for the inhibition of restriction endonucleases differing in the AT content of their recognition site and of their flanking DNA sequences. Thus, it is demonstrated that minor groove binders can compete with the binding of proteins in the major groove, providing an experimental indication for the influence of biological activities exerted by DNA ligands binding in the minor groove.  相似文献   

4.
Phenylamidine cationic groups linked by a furan ring (furamidine) and related symmetric diamidine compounds bind as monomers in the minor groove of AT sequences of DNA. DB293, an unsymmetric derivative with one of the phenyl rings of furamidine replaced with a benzimidazole, can bind to AT sequences as a monomer but binds more strongly to GC-containing minor-groove DNA sites as a stacked dimer. The dimer-binding mode has high affinity, is highly cooperative and sequence selective. In order to develop a better understanding of the correlation between structural and thermodynamic aspects of DNA molecular recognition, DB293 was used as a model to compare the binding of minor-groove agents with AT and mixed sequence DNA sites. Isothermal titration calorimetry and surface plasmon resonance results clearly show that the binding of DB293 and other related compounds into the minor groove of AT sequences is largely entropy-driven while the binding of DB293 as a dimer into the minor groove of GC-containing sequences is largely enthalpy-driven. At 25 degrees C, for example, the AT binding has DeltaG degrees, DeltaH degrees and TDeltaS degrees values of -9.6, -3.6 and 6.0 kcal/mol while the values for dimer binding to a GC-containing site are -9.0, -10.9 and -1.9 kcal/mol (per mol of bound compound), respectively. These results show that the thermodynamic components for binding of compounds of this type to DNA are very dependent on the structure, solvation and sequence of the DNA binding site.  相似文献   

5.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

6.
D Dasgupta  I H Goldberg 《Biochemistry》1985,24(24):6913-6920
Two general approaches have been taken to understand the mechanism of the reversible binding of the nonprotein chromophore of neocarzinostatin to DNA: (1) measurement of the relative affinity of the chromophore for various DNAs that have one or both grooves blocked by bulky groups and (2) studies on the influence of adenine-thymine residue-specific, minor groove binding agents such as the antibiotics netropsin and distamycin on the chromophore-DNA interaction. Experiments using synthetic DNAs containing halogen group (Br, I) substituents in the major groove or natural DNAs with glucosyl moieties projecting into the major groove show that obstruction of the major groove does not decrease the binding stoichiometry or the binding constant for the DNA-chromophore interaction. Chemical methylation of bases in both grooves of calf thymus DNA, resulting in 13% methylation of N-7 of guanine in the major groove and 7% methylation of N-3 of adenine in the minor groove, decreases the binding affinity and increases the size of the binding site for neocarzinostatin chromophore. Similar results were obtained whether binding parameters were determined directly by spectroscopic measurements or indirectly by measuring the ability of the DNA to protect the chromophore against degradation. On the other hand, netropsin and distamycin compete with neocarzinostatin chromophore for binding to the minor groove of DNA, as shown by their decrease in the ability of poly(dA-dT) to protect the chromophore against degradation and their reduction in chromophore-induced DNA damage as measured by thymine release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of compounds which bind in the DNA minor groove of A.T rich sequences, on bleomycin-catalyzed site-specific DNA cleavage were investigated by a DNA sequencing technique. Distamycin A enhanced bleomycin-catalyzed DNA cleavage in G.C rich sequences such as 5'-GGGGC-3' (under scoring; the cleaved nucleotide). The cleavage in such a sequence in the presence of distamycin A was greater than that in the absence of distamycin A by as much as about 100 times. Neither Hoechst 33258, 4',6-diamidino-2-phenylindole (DAPI) nor berenil caused extensive enhancement. The results suggest that the distamycin-induced conformational changes of DNA through interactions other than the DNA minor groove binding in A.T-rich sequences are specifically suitable for the bleomycin action.  相似文献   

8.
The conformational deformability of nucleic acids can influence their function and recognition by proteins. A class of DNA binding proteins including the TATA box binding protein binds to the DNA minor groove, resulting in an opening of the minor groove and DNA bending toward the major groove. Explicit solvent molecular dynamics simulations in combination with the umbrella sampling approach have been performed to investigate the molecular mechanism of DNA minor groove deformations and the indirect energetic contribution to protein binding. As a reaction coordinate, the distance between backbone segments on opposite strands was used. The resulting deformed structures showed close agreement with experimental DNA structures in complex with minor groove-binding proteins. The calculated free energy of minor groove deformation was approximately 4-6 kcal mol(-1) in the case of a central TATATA sequence. A smaller equilibrium minor groove width and more restricted minor groove mobility was found for the central AAATTT and also a significantly ( approximately 2 times) larger free energy change for opening the minor groove. The helical parameter analysis of trajectories indicates that an easier partial unstacking of a central TA versus AT basepair step is a likely reason for the larger groove flexibility of the central TATATA case.  相似文献   

9.
10.
High-resolution NMR techniques (proton and 19F) have been used to study the interactions between several DNA oligonucleotides with varying length of AT base pairs and the synthetic pyrrole-containing compound (P1-F4S-P1), which has properties similar to the DNA minor groove binding drug distamycin A. When this two-fold symmetrical DNA binding molecule is added to the self-complementary DNA oligomers, the resulting complex exhibits an NMR spectrum without any doubling of individual resonances, consistent with a two-fold symmetry of the complex. This is in contrast to all other complexes studied so far. The minimum length of an AT stretch for specific ligand binding is judged to be greater than 4 base pairs. Inter-molecular proton nuclear Overhauser effects between the ligand molecule and a DNA dodecamer d(CGCAAATTTGCG) provide evidence that P1-F4S-P1 binds DNA in the minor groove and interacts with the middle AT base pairs. The presence of a specific interaction between P1-F4S-P1 and DNA is conclusively demonstrated by 19F NMR studies, in which four previously chemically equivalent fluorine nuclei in the free molecule become two non-equivalent pairs (yielding an AB quartet pattern) upon the binding of P1-F4S-P1 to DNA duplex. A sequence-dependent binding behavior of P1-F4S-P1 is evident by comparing the 19F NMR spectra of the complexes between P1-F4S-P1 and two different but related DNA dodecamers, d(CGCAAATTTGCG) and d(CGCTTTAAAGCG). P1-F4S-P1 binds more strongly to the former dodecamer with an association constant of approximately 1 X 10(3) M-1.  相似文献   

11.
RT29 is a dicationic diamidine derivative that does not obey the classical "rules" for shape and functional group placement that are expected to result in strong binding and specific recognition of the DNA minor groove. The compound contains a benzimidazole diphenyl ether core that is flanked by the amidine cations. The diphenyl ether is highly twisted and gives the entire compound too much curvature to fit well to the shape of the minor groove. DNase I footprinting, fluorescence intercalator displacement studies, and circular dichroism spectra, however, indicate that the compound is an AT specific minor groove binding agent. Even more surprisingly, quantitative biosensor-surface plasmon resonance and isothermal titration calorimetric results indicate that the compound binds with exceptional strength to certain AT sequences in DNA with a large negative enthalpy of binding. Crystallographic results for the DNA complex of RT29 compared to calculated results for the free compound show that the compound undergoes significant conformational changes to enhance its minor groove interactions. In addition, a water molecule is incorporated directly into the complex to complete the compound-DNA interface, and it forms an essential link between the compound and base pair edges at the floor of the minor groove. The calculated DeltaCp value for complex formation is substantially less than the experimentally observed value, which supports the idea of water being an intrinsic part of the complex with a major contribution to the DeltaCp value. Both the induced fit conformational changes of the compound and the bound water are essential for strong binding to DNA by RT29.  相似文献   

12.
We previously reported that distamycin A, a natural antibiotic known as a minor groove binder, could bind to DNA duplexes containing the (6-4) photoproduct formed at its target site, whereas the binding was not observed for duplexes containing the cis-syn cyclobutane pyrimidine dimer in the same sequence context. In this study, we have further analyzed the binding of this drug to lesion-containing duplexes to elucidate its damaged-DNA recognition mechanism. Surface plasmon resonance measurements using various types of DNA showed that distamycin A could bind to several types of lesion-containing DNA. Curve fitting of the CD titration data revealed that the complex formation occurred with K(d) values around 10(-6) and a stoichiometry of 1:1. The results obtained in this study suggested that distamycin A binds to damaged DNA in the same way as to the normal target site, by recognizing the chemical structure of the minor groove.  相似文献   

13.
In the present work, we employ a combination of CD spectroscopy and gel retardation technique to characterize thermodynamically the binding of lambda phage cro repressor to a 17 base pair operator OR3. We have found that three minor groove-binding antibiotics, distamycin A, netropsin and sibiromycin, compete effectively with the cro for binding to the operator OR3. Among these antibiotics, sibiromycin binds covalently to DNA in the minor groove at the NH2 of guanine, whereas distamycin A and netropsin interact preferentially with runs of AT base pairs and avoid DNA regions containing guanine bases in the two polynucleotide strands. Only subtle DNA conformation changes are known to take place upon binding of these antibiotics. Both the CD spectral profiles and the results of the gel retardation experiments indicate that distamycin A and netropsin can displace cro repressor from the operator OR3. The binding of cro repressor to the OR3 is accompanied by considerable changes in CD in the far-UV region which appear to be attributed to a DNA-dependent structural transition in the protein. Spectral changes are also induced in the wavelength region of 270-290 nm. The CD spectral profile of the cro-OR3 mixture in the presence of distamycin A can be represented as a sum of the CD spectrum of the repressor-operator complex and spectrum of distamycin-DNA complex at the appropriate molar ratio of the bound antibiotic to the operator DNA (r). When r tends to the saturation level of binding the CD spectrum in the region of 270-360 nm approaches a CD pattern typical of complexes of the antibiotic with the free DNA oligomer. This suggests that simultaneous binding of cro repressor and distamycin A to the same DNA oligomer is not possible and that distamycin A and netropsin can be used to determine the equilibrium affinity constant of cro repressor to the synthetic operator from competition-type experiments. The binding constant of cro repressor to the OR3 is found to be (6 +/- 1).10(6)M-1 at 20 degrees C in 10 mM sodium cacodylate buffer (pH 7.0) in the presence of 0.1 M NH4F.  相似文献   

14.
Interaction of topotecan (TPT) with calf thymus DNA, coliphage T4 DNA, and poly(dG-dC). poly(dG-dC) was studied by optical (linear flow dichroism, UV-vis spectroscopy) and quantum chemical methods. The linear dichroism (LD) signal of TPT bound to DNA was shown to have positive sign in the range 260-295 nm. This means that the plane of quinoline fragment (rings A and B) of TPT molecule form an angle lower 54 degrees with the long axis of DNA, and hence TPT molecule can not intercalate between DNA base pairs. TPT was established to bind to calf thymus DNA as readily as to coliphage T4 DNA whose all cytosines in the major groove were glycosylated at the 5th position. Consequently, the DNA major groove does not participate in TPT binding. TPT molecule was shown to compete with distamycin for binding sites in the minor groove of DNA and poly(dG-dC). poly(dG-dC). Thus, it was demonstrated for the first time that TPT binds to DNA at its minor groove.  相似文献   

15.
The interactions of DAPI with natural DNA and synthetic polymers have been investigated by hydrodynamic, DNase I footprinting, spectroscopic, binding, and kinetic methods. Footprinting results at low ratios (compound to base pair) are similar for DAPI and distamycin. At high ratios, however, GC regions are blocked from enzyme cleavage by DAPI but not by distamycin. Both poly[d(G-C)]2 and poly[d(A-T)]2 induce hypochromism and shifts of the DAPI absorption band to longer wavelengths, but the effects are larger with the GC polymer. NMR shifts of DAPI protons in the presence of excess AT and GC polymers are significantly different, upfield for GC and mixed small shifts for AT. The dissociation rate constants and effects of salt concentration on the rate constants are also quite different for the AT and the GC polymer complexes. The DAPI dissociation rate constant is larger with the GC polymer but is less sensitive to changes in salt concentration than with the AT complex. Binding of DAPI to the GC polymer and to poly[d(A-C)].poly[d(G-T)] exhibits slight negative cooperativity, characteristic of a neighbor-exclusion binding mode. DAPI binding to the AT polymer is unusually strong and exhibits significant positive cooperativity. DAPI has very different effects on the bleomycin-catalyzed cleavage of the AT and GC polymers, a strong inhibition with the AT polymer but enhanced cleavage with the GC polymer. All of these results are consistent with two totally different DNA binding modes for DAPI in regions containing consecutive AT base pairs versus regions containing GC or mixed GC and AT base pair sequences. The binding mode at AT sites has characteristics which are similar to those of the distamycin-AT complex, and all results are consistent with a cooperative, very strong minor groove binding mode. In GC and mixed-sequence regions the results are very similar to those observed with classical intercalators such as ethidium and indicate that DAPI intercalates in DNA sequences which do not contain at least three consecutive AT base pairs.  相似文献   

16.
Heterogeneity in the actions of drugs that bind in the DNA minor groove.   总被引:4,自引:0,他引:4  
Distamycin and Hoechst 33258 have long served as the model compounds for biochemical, biophysical, and clinical studies of the drugs that bind in the DNA minor groove. However, the results presented in this investigation clearly show that 4,6-diamidino-2 phenylindole (DAPI) is superior to both of these drugs at negating the effects of intrinsic DNA curvature and anisotropic bendability as measured by electrophoretic and ligation analysis. In addition, DAPI was more effective than distamycin and Hoechst 33258 at inhibiting the assembly of nucleosomes onto synthetic and natural sequences that have multiple closely spaced oligo-AT sequences that serve as drug binding sites. Since these effects may be related to the biological action of the drugs, it was of interest to determine the mechanism that was responsible for the enhanced action of DAPI. The possibility that the differential drug potencies resulted from differential overall affinities of the ligands for A-tract molecules was considered, but drug binding studies suggested that this was not the case. It is also unlikely that the differential drug effects resulted from the binding of the drugs to different DNA sites since the oligo A/T binding sites for DAPI and Hoechst were centered on the same nucleotide positions as revealed by footprinting studies using exonuclease III, DNase I, and hydroxyl radical. However, the footprinting studies with DNase I did uncover a potentially important difference between the drugs. DAPI protected only the AT bp in the binding sites, while distamycin and Hoechst protected these bp as well as flanking Gs and Cs. These results permitted us to advance a preliminary model for the enhanced action DAPI. According to the model, the short length of DAPI and its absolute specificity for A/T bps with narrow minor grooves ensures that only particularly minor grooves that give rise to curvature and anisotropic bendability are occupied by the drug. Consequently, each helical deflection induced by an A-tract in the absence of the drug is countered by an opposite deflection induced by DAPI binding, thus effectively neutralizing intrinsic curvature and bending into the minor groove.  相似文献   

17.
Assembly of interferon-β enhanceosome from its individual protein components and of enhancer DNA has been studied in solution using a combination of fluorescence anisotropy, microcalorimetry, and CD titration. It was shown that the enhancer binds only one full-length phosphomimetic IRF-3 dimer at the PRDIII-PRDI sites, and this binding does not exhibit cooperativity with binding of the ATF-2/c-Jun bZIP (leucine zipper dimer with basic DNA recognition segments) heterodimer at the PRDIV site. The orientation of the bZIP pair is, therefore, not determined by the presence of the IRF-3 dimer, but is predetermined by the asymmetry of the PRDIV site. In contrast, bound IRF-3 dimer interacts strongly with the NF-κB (p50/p65) heterodimer bound at the neighboring PRDII site. The orientation of bound NF-κB is also predetermined by the asymmetry of the PRDII site and is the opposite of that found in the crystal structure. The HMG-I/Y protein, proposed as orchestrating enhanceosome assembly, interacts specifically with the PRDII site of the interferon-β enhancer by inserting its DNA-binding segments (AT hooks) into the minor groove, resulting in a significant increase in NF-κB binding affinity for the major groove of this site.  相似文献   

18.
The interaction of the antibiotics distamycin A, distamycin analogue and netropsin with chromatin of calf thymus has been studied by circular dichroism measurements and by gel filtration. The minor groove of DNA in chromatin is accessible by 83–89% to the binding of these antibiotics as compared with that of free DNA. The present results combined with our data on the methylation of chromatin with dimethylsulphate [3] strongly suggest that the minor groove of DNA in chromatin is not occupied by chromatin proteins.Abbreviations DM distamycin A - DM2 analogue of distamycin - Nt netropsin - CD spectra circular dichroism spectra  相似文献   

19.
We present titrations of the human δβ-globin gene region with DNA minor groove binders netropsin, bisnetropsin, distamycin, chromomycin and four bis-quaternary ammonium compounds in the presence of calf thymus topoisomerase II and DNase I. With increasing ligand concentration, stimulation and inhibition of enzyme activity were detected and quantitatively evaluated. Additionally we show a second type of stimulation, the appearance of strong new topoisomerase II cleavage sites at high ligand concentrations. The specific binding sites of the minor groove binders of the DNA sequence and their microscopic binding constants were determined from DNase I footprints. A binding mechanism for minor groove binders is proposed in order to explain these results especially when ligand concentration is increased. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
DNA‐minor‐groove‐binding ligands are potent antineoplastic molecules. The antibiotic distamycin A is the prototype of one class of these DNA‐interfering molecules that have been largely used in vitro. The affinity of distamycin A for DNA is well known, and the structural details of the complexes with some B‐DNA and G‐quadruplex‐forming DNA sequences have been already elucidated. Here, we show that distamycin A binds S100β, a protein involved in the regulation of several cellular processes. The reported affinity of distamycin A for the calcium(II)‐loaded S100β reinforces the idea that some biological activities of the DNA‐minor‐groove‐binding ligands arise from the binding to cellular proteins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号