首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Plants are known to be efficient hosts for the production of mammalian therapeutic proteins. However, plants produce complex N-glycans bearing β1,2-xylose and core α1,3-fucose residues, which are absent in mammals. The immunogenicity and allergenicity of plant-specific N-glycans is a key concern in mammalian therapy. In this study, we amplified the sequences of 2 plant-specific glycosyltransferases from Nicotiana tabacum L. cv Bright Yellow 2 (BY2), which is a well-established cell line widely used for the expression of therapeutic proteins. The expression of the endogenous xylosyltranferase (XylT) and fucosyltransferase (FucT) was downregulated by using RNA interference (RNAi) strategy. The xylosylated and core fucosylated N-glycans were significantly, but not completely, reduced in the glyco-engineered lines. However, these RNAi-treated cell lines were stable and viable and did not exhibit any obvious phenotype. Therefore, this study may provide an effective and promising strategy to produce recombinant glycoproteins in BY2 cells with humanized N-glycoforms to avoid potential immunogenicity.  相似文献   

2.
Glyco-engineering of moss lacking plant-specific sugar residues   总被引:1,自引:0,他引:1  
The commercial production of complex pharmaceutical proteins from human origin in plants is currently limited through differences in protein N-glycosylation pattern between plants and humans. On the one hand, plant-specific alpha(1,3)-fucose and beta(1,2)-xylose residues were shown to bear strong immunogenic potential. On the other hand, terminal beta(1,4)-galactose, a sugar common on N-glycans of pharmaceutically relevant proteins, e.g., antibodies, is missing in plant N-glycan structures. For safe and flexible production of pharmaceutical proteins, the humanisation of plant protein N-glycosylation is essential. Here, we present an approach that combines avoidance of plant-specific and introduction of human glycan structures. Transgenic strains of the moss Physcomitrella patens were created in which the alpha(1,3)-fucosyltransferase and beta(1,2)-xylosyltransferase genes were knocked out by targeted insertion of the human beta(1,4)-galactosyltransferase coding sequence in both of the plant genes (knockin). The transgenics lacked alpha(1,3)-fucose and beta(1,2)-xylose residues, whereas beta(1,4)-galactose residues appeared on protein N-glycans. Despite these significant biochemical changes, the plants did not differ from wild type with regard to overall morphology under standard cultivation conditions. Furthermore, the glyco-engineered plants secreted a transiently expressed recombinant human protein, the vascular endothelial growth factor, in the same concentration as unmodified moss, indicating that the performed changes in glycosylation did not impair the secretory pathway of the moss. The combined knockout/knockin approach presented here, leads to a new generation of engineered moss and towards the safe and flexible production of correctly processed pharmaceutical proteins with humanised N-glycosylation profiles.  相似文献   

3.
In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.  相似文献   

4.
Xyloglucan is the dominant hemicellulosic polysaccharide of the primary cell wall of dicotyledonous plants that plays a key role in plant development. It is well established that xyloglucan is assembled within Golgi stacks and transported in Golgi-derived vesicles to the cell wall. It is also known that the biosynthesis of xyloglucan requires the action of glycosyltransferases including α-1,6-xylosyltransferase, β-1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of xylose, galactose and fucose residues to the side chains. There is, however, a lack of knowledge on how these enzymes are distributed within subcompartments of Golgi stacks. We have undertaken a study aiming at mapping these glycosyltransferases within Golgi stacks using immunogold-electron microscopy. To this end, we generated transgenic lines of tobacco (Nicotiana tabacum) BY-2 suspension-cultured cells expressing either the α-1,6-xylosyltransferase, AtXT1, the β-1,2-galactosyltransferase, AtMUR3, or the α-1,2-fucosyltransferase AtFUT1 of Arabidopsis thaliana fused to green-fluorescent protein (GFP). Localization of the fusion proteins within the endomembrane system was assessed using confocal microscopy. Additionally, tobacco cells were high pressure-frozen/freeze-substituted and subjected to quantitative immunogold labelling using anti-GFP antibodies to determine the localization patterns of the enzymes within subtypes of Golgi cisternae. The data demonstrate that: (i) all fusion proteins, AtXT1-GFP, AtMUR3-GFP and AtFUT1-GFP are specifically targeted to the Golgi apparatus; and (ii) AtXT1-GFP is mainly located in the cis and medial cisternae, AtMUR3-GFP is predominantly associated with medial cisternae and AtFUT1-GFP mostly detected over trans cisternae suggesting that initiation of xyloglucan side chains occurs in early Golgi compartments in tobacco cells.  相似文献   

5.
The recent SARS-CoV-2 pandemic has taught the world a costly lesson about the devastating consequences of viral disease outbreaks but also, the remarkable impact of vaccination in limiting life and economic losses. Vaccination against human Hepatitis B Virus (HBV), a major human pathogen affecting 290 million people worldwide, remains a key action towards viral hepatitis elimination by 2030. To meet this goal, the development of improved HBV antigens is critical to overcome non-responsiveness to standard vaccines based on the yeast-produced, small (S) envelope protein. We have recently shown that combining relevant immunogenic determinants of S and large (L) HBV proteins in chimeric antigens markedly enhances the anti-HBV immune response. However, the demand for cost-efficient, high-quality antigens remains challenging. This issue could be addressed by using plants as versatile and rapidly scalable protein production platforms. Moreover, the recent generation of plants lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO), by CRISPR/Cas9 genome editing, enables production of proteins with “humanized” N-glycosylation. In this study, we investigated the impact of plant N-glycosylation on the immunogenic properties of a chimeric HBV S/L vaccine candidate produced in wild-type and FX-KO Nicotiana benthamiana. Prevention of β-1,2-xylose and α-1,3-fucose attachment to the HBV antigen significantly increased the immune response in mice, as compared with the wild-type plant-produced counterpart. Notably, the antibodies triggered by the FX-KO-made antigen neutralized more efficiently both wild-type HBV and a clinically relevant vaccine escape mutant. Our study validates in premiere the glyco-engineered Nicotiana benthamiana as a substantially improved host for plant production of glycoprotein vaccines.  相似文献   

6.
7.
Abstract: Allergenicity of plant glycoproteins in humans may prevent the use of plants as production factories for pharmaceutically important proteins. The major difference between plant and mammalian N-glycans is the presence of xylosyl and α1,3-fucosyl residues in the former. In a first step towards "humanization" of the N-glycosylation pathway in the moss Physcomitrella patens, which could be an excellent system for industrial production of therapeutic proteins, we isolated the cDNAs and genes for N-acetylglucosaminyltransferase I (GNTI), α1,3-fucosyltransferase, and β1,2-xylosyltransferase. Sequence analysis revealed that all three proteins are homologous to their counterparts from higher plants, however, the conservation of the primary structure was only 35 - 45 %. The gene encoding the key enzyme of the pathway, gntI, was disrupted in P. patens by homologous recombination. Although the mutation of this gene in mouse or A. thaliana led to a significantly altered pattern of N-glycans, the glycosylation pattern in the gntI knockouts did not differ from that in wild-type moss and was identical to that in higher plants. Protein secretion, analysed in assays with recombinant human VEGF121 protein, was not affected in the knockouts. We conclude from our findings that the N-glycosylation pathway in P. patens is identically organized to that in higher plants. However, P. patens probably possesses more than one isoform of GNTI which complicates a straightforward knockout. Therefore, and since complex type structures appear more desirable than oligomannosidic N-glycans, future modifications of the pathway should target α1,3-fucosyltransferase and/or β1,2-xylosyltransferase.  相似文献   

8.
9.
We previously described the expression of a tumour-targeting antibody (mAb H10) in Nicotiana benthamiana by vacuum-agro-infiltration and the remarkable yields of highly pure protein achieved. The objective of the present work was to investigate different strategies for transient overexpression of the mAb H10 in which glycan configuration was modulated and assess how these strategies affect the accumulation yield and stability of the antibody. To this aim, three procedures have been assayed: (1) Site-directed mutagenesis to abolish the glycosylation site; (2) endoplasmic reticulum retention (C-terminal SEKDEL fusion) to ensure predominantly high-mannose type glycans; and (3) expression in a N. benthamiana RNAi down-regulated line in which β1,2-xylosyltransferase and α1,3-fucosyltransferase gene expression is silenced. The three antibody variants (H10-Mut) (H10-SEKDEL) (H10(XylT/FucT)) were transiently expressed, purified and characterised for their glycosylation profile, expression/purification yield and antibody degradation pattern. Glycosylation analysis of H10(XylT/FucT) demonstrated the absence of plant complex-type sugars, while H10-SEKDEL, although substantially retained in the ER, revealed the presence of β1,2-xylose and α1,3-fucose residues, indicating a partial escape from the ER retrieval system. Antibody accumulation and purification yields were not enhanced by ER retention. All H10 antibody glyco-forms revealed greater degradation compared to the original, resulting mostly in the formation of Fab fragments. In the case of aglycosylated H10-Mut, more than 95% of the heavy chain was cleaved, confirming the pivotal role of the sugar moiety in protein stability. Identification of possible 'fragile' sites in the H10 antibody hinge region could be of general interest for the development of new strategies to reduce antibody degradation and increase the yield of intact IgGs in plants.  相似文献   

10.
The plant glycosyltransferases, beta1,2-xylosyltransferase (XylT) and core alpha1,3-fucosyltransferase (FucT), are responsible for the transfer of beta1,2-linked xylose and core alpha1,3-linked fucose residues to glycoprotein N-glycans. These glycan epitopes are not present in humans and thus may cause immunological responses, which represent a limitation for the therapeutic use of recombinant mammalian glycoproteins produced in transgenic plants. Here we report the genetic modification of the N-glycosylation pathway in Arabidopsis thaliana plants. Knockout plants were generated with complete deficiency of XylT and FucT. These plants lack antigenic protein-bound N-glycans and instead synthesise predominantly structures with two terminal betaN-acetylglucosamine residues (GlcNAc(2)Man(3)GlcNAc(2)).  相似文献   

11.
Maize is considered a promising alternative production system for pharmaceutically relevant proteins. However, like in all other plant species asparagine-linked oligosaccharides of maize glycoproteins are modified with beta1,2-xylose and core alpha1,3-fucose sugar residues, which are considered to be immunogenic in mammals. This altered N-glycosylation when compared to mammalian cells may reduce the potential of maize as a production system for heterologous glycoproteins. Here we report the cloning and characterization of the cDNA sequences coding for the maize enzymes beta1,2-xylosyltransferase (XylT) and core alpha1,3-fucosyltransferase (FucT). The cloned XylT and FucT cDNAs were shown to encode enzymatically active proteins, which were independently able to convert a mammalian acceptor glycoprotein into an antigen binding anti-plant N-glycan antibodies. The complete sequence of the XylT gene was determined. Evidence for the presence of at least three XylT and FucT gene loci in the maize genome was obtained. The identification of the two enzymes and their genes will allow the targeted downregulation or even elimination of beta1,2-xylose and core alpha1,3-fucose addition to recombinant glycoproteins produced in maize.  相似文献   

12.
13.
High-throughput quantitative analytical method for plant N-glycan has been developed. All steps, including peptide N-glycosidase (PNGase) A treatment, glycan preparation, and exoglycosidase digestion, were optimized for high-throughput applications using 96-well format procedures and automatic analysis on a DNA sequencer. The glycans of horseradish peroxidase with plant-specific core α(1,3)-fucose can be distinguished by the comparison of the glycan profiles obtained via PNGase A and F treatments. The peaks of the glycans with (91%) and without (1.2%) α(1,3)-fucose could be readily quantified and shown to harbor bisecting β(1,2)-xylose via simultaneous treatment with α(1,3)-mannosidase and β(1,2)-xylosidase. This optimized method was successfully applied to analyze N-glycans of plant-expressed recombinant antibody, which was engineered to contain a minor amount of glycan harboring β(1,2)-xylose. These results indicate that our DNA sequencer-based method provides quantitative information for plant-specific N-glycan analysis in a high-throughput manner, which has not previously been achieved by glycan profiling based on mass spectrometry.  相似文献   

14.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

15.
16.
Plant‐produced glycoproteins contain N‐linked glycans with plant‐specific residues of β(1,2)‐xylose and core α(1,3)‐fucose, which do not exist in mammalian‐derived proteins. Although our experience with two enzymes that are used for enzyme replacement therapy does not indicate that the plant sugar residues have deleterious effects, we made a conscious decision to eliminate these moieties from plant‐expressed proteins. We knocked out the β(1,2)‐xylosyltranferase (XylT) and the α(1,3)‐fucosyltransferase (FucT) genes, using CRISPR/Cas9 genome editing, in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. In total, we knocked out 14 loci. The knocked‐out lines were stable, viable and exhibited a typical BY2 growing rate. Glycan analysis of the endogenous proteins of these lines exhibited N‐linked glycans lacking β(1,2)‐xylose and/or α(1,3)‐fucose. The knocked‐out lines were further transformed successfully with recombinant DNaseI. The expression level and the activity of the recombinant protein were similar to that of the protein produced in the wild‐type BY2 cells. The recombinant DNaseI was shown to be totally free from any xylose and/or fucose residues. The glyco‐engineered BY2 lines provide a valuable platform for producing potent biopharmaceutical products. Furthermore, these results demonstrate the power of the CRISPR/Cas9 technology for multiplex gene editing in BY2 cells.  相似文献   

17.
Protein therapeutics represent one of the most increasing areas in the pharmaceutical industry. Plants gain acceptance as attractive alternatives for high-quality and economical protein production. However, as the majority of biopharmaceuticals are glycoproteins, plant-specific N-glycosylation has to be taken into consideration. In Physcomitrella patens (moss), glyco-engineering is an applicable tool, and the removal of immunogenic core xylose and fucose residues was realized before. Here, we present the identification of the enzymes that are responsible for terminal glycosylation (α1,4 fucosylation and β1,3 galactosylation) on complex-type N-glycans in moss. The terminal trisaccharide consisting of α1,4 fucose and β1,3 galactose linked to N-acetylglucosamine forms the so-called Lewis A epitope. This epitope is rare on moss wild-type proteins, but was shown to be enriched on complex-type N-glycans of moss-produced recombinant human erythropoietin, while unknown from the native human protein. Via gene targeting of moss galactosyltransferase and fucosyltransferase genes, we identified the gene responsible for terminal glycosylation and were able to completely abolish the formation of Lewis A residues on the recombinant biopharmaceutical.  相似文献   

18.
A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N -glycosylation (i.e. the presence of β1,2-xylosylation and core α1,3-fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down-regulation of the endogenous β1,2- xylosyltransferase (XylT) and α1,3- fucosyltransferase (FucT) genes in Nicotiana benthamiana , a tobacco-related plant species widely used for recombinant protein expression. Three glyco-engineered lines with significantly reduced xylosylated and/or core α1,3-fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild-type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core α1,3-fucose residues in their N -glycans were produced. Notably, 2G12 produced in XylT/FucT-RNAi plants was found to contain an almost homogeneous N -glycan species without detectable xylose and α1,3-fucose residues. Plant-derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)-derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N -glycan structure.  相似文献   

19.
For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco‐engineered line (NbGNTI‐RNAi) showed a strong reduction of plant‐specific N‐glycans, with the result that as much as 90.9% of the total N‐glycans were of high‐mannose type. Therefore, this NbGNTI‐RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI‐RNAi plant was cross‐pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N‐glycan structures that were presented on all of the four occupied N‐glycosylation sites of recombinant GC in NbGNTI‐RNAi plants (GCgnt1) showed that the majority (ranging from 73.3% up to 85.5%) of the N‐glycans had mannose‐type structures lacking potential immunogenic β1,2‐xylose and α1,3‐fucose epitopes. Moreover, GCgnt1 could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI‐RNAi line, producing GC, was stable and the NbGNTI‐RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N‐glycan structures.  相似文献   

20.
Plant biosimilars of anticancer therapeutic antibodies are of interest not only because of the prospects of their practical use, but also as an instrument and object for study of plant protein glycosylation. In this work, we first designed a pertuzumab plant biosimilar (PPB) and investigated the composition of its Asn297-linked glycan in comparison with trastuzumab plant biosimilar (TPB). Both biosimilars were produced in wild-type (WT) Nicotiana benthamiana plant (PPBWT and TPB-WT) and transgenic ΔXTFT N. benthamiana plant with XT and FT genes knockout (PPB-ΔXTFT and TPBΔXTFT). Western blot analysis with anti-α1,3-fucose and anti-xylose antibodies, as well as a test with peptide-N-glycosidase F, confirmed the absence of α1,3-fucose and xylose in the Asn297-linked glycan of PPB-ΔXTFT and TPB-ΔXTFT. Peptide analysis followed by the identification of glycomodified peptides using MALDI-TOF/TOF showed that PPB-WT and TPB-WT Asn297-linked glycans are mainly of complex type GnGnXF. The core of PPB-WT and TPB-WT Asn297linked GnGn-type glycan contains α1,3-fucose and β1,2-xylose, which, along with the absence of terminal galactose and sialic acid, distinguishes these plant biosimilars from human IgG. Analysis of TPB-ΔXTFT total carbohydrate content indicates the possibility of changing the composition of the carbohydrate profile not only of the Fc, but also of the Fab portion of an antibody produced in transgenic ΔXTFT N. benthamiana plants. Nevertheless, study of the antigen-binding capacity of the biosimilars showed that absence of xylose and fucose residues in the Asn297-linked glycans does not affect the ability of the glycomodified antibodies to interact with HER2/neu positive cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号