首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolins (CAVs) are essential components of caveolae, plasma membrane invaginations with reduced fluidity, reflecting cholesterol accumulation. CAV proteins bind cholesterol, and CAV's ability to move between cellular compartments helps control intracellular cholesterol fluxes. In humans, CAV1 mutations result in lipodystrophy, cell transformation, and cancer. CAV1 gene-disrupted mice exhibit cardiovascular diseases, diabetes, cancer, atherosclerosis, and pulmonary fibrosis. The mechanism or mechanisms underlying these disparate effects are unknown, but our past work suggested that CAV1 deficiency might alter metabolism: CAV1(-/-) mice exhibit impaired liver regeneration unless supplemented with glucose, suggesting systemic inefficiencies requiring additional metabolic intermediates. Establishing a functional link between CAV1 and metabolism would provide a unifying theme to explain these myriad pathologies. Here we demonstrate that impaired proliferation and low survival with glucose restriction is a shortcoming of CAV1-deficient cells caused by impaired mitochondrial function. Without CAV1, free cholesterol accumulates in mitochondrial membranes, increasing membrane condensation and reducing efficiency of the respiratory chain and intrinsic antioxidant defense. Upon activation of oxidative phosphorylation, this promotes accumulation of reactive oxygen species, resulting in cell death. We confirm that this mitochondrial dysfunction predisposes CAV1-deficient animals to mitochondrial-related diseases such as steatohepatitis and neurodegeneration.  相似文献   

2.
CD39 (ecto-nucleoside triphosphate diphosphohydrolase-1; E-NTPDase1) is a plasma membrane ecto-enzyme that regulates purinergic receptor signaling by controlling the levels of extracellular nucleotides. In blood vessels this enzyme exhibits a thromboregulatory role through the control of platelet aggregation. CD39 is localized in caveolae, which are plasma membrane invaginations with distinct lipid composition, similar to dynamic lipid microdomains, called rafts. Cholesterol is enriched together with sphingolipids in both rafts and caveolae, as well as in other specialized domains of the membrane, and plays a key role in their function. Here, we examine the potential role of cholesterol-enriched domains in CD39 function. Using polarized Madin-Darby canine kidney (MDCK) cells and caveolin-1 gene-disrupted mice, we show that caveolae are not essential either for the enzymatic activity of CD39 or for its targeting to plasma membrane. On the other hand, flotation experiments using detergent-free or detergent-based approaches indicate that CD39 associates, at least in part, with distinct lipid assemblies. In the apical membrane of MDCK cells, which lacks caveolae, CD39 is localized in microvilli, which are also cholesterol and raft-dependent membrane domains. Interfering with cholesterol levels using drugs that either deplete or sequester membrane cholesterol results in a strong inhibition of the enzymatic and anti-platelet activity of CD39. The effects of cholesterol depletion are completely reversed by replenishment of membranes with pure cholesterol, but not by cholestenone. These data suggest a functional link between the localization of CD39 in cholesterol-rich domains of the membrane and its role in thromboregulation.  相似文献   

3.
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl--cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane. lipid rafts; caveolae; extracellular signal-regulated kinase  相似文献   

4.
Although the functional significance of caveolae/lipid rafts in cellular signaling and cholesterol transfer is increasingly recognized, almost nothing is known regarding the lipids, cholesterol dynamics, and factors regulating these properties in caveolae/lipid rafts as opposed to nonlipid raft domains of the plasma membrane. The present findings demonstrate the utility of con-A affinity chromatography for simultaneous isolation of caveolae/lipid raft and nonlipid raft domains from plasma membranes of L-cell fibroblasts. These domains differed markedly in both protein and lipid constituents. Although caveolae/lipid rafts were enriched in total lipid, cholesterol, and phospholipid as well as other markers for these domains, the cholesterol/phospholipid ratio of caveolae/lipid rafts did not differ from that of nonlipid rafts. Nevertheless, spontaneous sterol transfer was 7-12-fold faster from caveolae/lipid raft than nonlipid raft domains of the plasma membrane. This was largely due to the near absence of exchangeable sterol in the nonlipid rafts. SCP-2 dramatically and selectively enhanced sterol transfer from caveolae/lipid rafts, but not from nonlipid rafts. Finally, overexpression of SCP-2 significantly altered the sterol dynamics of caveolae/lipid rafts to facilitate retention of cholesterol within the cell. These results established for the first time that (i) caveolae/lipid rafts, rather than the nonlipid raft domains, contain significant levels of rapidly transferable sterol, consistent with their role in spontaneous sterol transfer from and through the plasma membrane, and (ii) SCP-2 selectively regulates how caveolae/lipid rafts, but not nonlipid raft domains, mediate cholesterol trafficking through the plasma membrane.  相似文献   

5.
CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy.  相似文献   

6.
Mitochondrial porin, or voltage-dependent anion channel, is a pore-forming protein first discovered in the outer mitochondrial membrane. Later investigations have provided indications for its presence also in other cellular membranes, including the plasma membrane, and in caveolae. This extra-mitochondrial localization is debated and no clear-cut conclusion has been reached up to now. In this work, we used biochemical and electrophysiological techniques to detect and characterize porin within isolated caveolae and caveolae-like domains (low density Triton-insoluble fractions). A new procedure was used to isolate porin from plasma membrane. The outer surface of cultured CEM cells was biotinylated by an impermeable reagent. Low density Triton-insoluble fractions were prepared from the labeled cells and used as starting material to purify a biotinylated protein with the same electrophoretic mobility and immunoreactivity of mitochondrial porin. In planar bilayers, the porin from these sources formed slightly anion-selective pores with properties indistinguishable from those of mitochondrial porin. This work thus provides a strong indication of the presence of porin in the plasma membrane, and specifically in caveolae and caveolae-like domains.  相似文献   

7.
Cultures of MDCK II and human fibroblast cells were fed radioactive sphingosine and a radioactive GM3 ganglioside derivative containing a photoactivable group. The derived cell homogenates were treated with Triton X-100 and fractionated by sucrose-gradient centrifugation to prepare a detergent-insoluble membrane fraction known to be enriched in sphingolipid and caveolin-1, i.e. of caveolae. The detergent-insoluble membrane fraction prepared after feeding [1-3H]sphingosine to cells, was found to be highly enriched, with respect to protein content, in metabolically radiolabeled sphingomyelin and glycosphingolipids (about 18-fold). By feeding cells photoactivable radioactive GM3, after 2 h-chase, caveolin-1, CAV1, and proteins of high molecular mass became cross-linked to GM3, the cross-linking complexes being highly concentrated in the detergent-insoluble membrane fraction. The interaction between the ganglioside derivative and CAV1 was a time-dependent, transient process so that CAV1 cross-linking to GM3 was hardly detectable after a 24-h chase followed the pulse time. After a 24-h chase, only the high molecular mass proteins cross-linked to GM3 could be clearly observed. These results suggest that a portion of the GM3 administered to cells enters caveolae and moves to the glycosphingolipid domains, or enters caveolae that are then rapidly catabolized. Electron microscopy of cells in a culture immunostained with a monoclonal antibody to GM3 and a secondary gold-conjugated antibody detected several clusters of gangliosides on the plasma membranes separate from caveolae; gangliosides located inside the caveolae could not be detected. Scanning confocal microscopy of cells immunostained with anti-GM3 and anti-CAV1 Ig showed only a very small overlap with the CAV1 and GM3 signals. Thus, the biochemical and microscopic studies suggest that caveolae contain at most a low level of gangliosides and are separate from the GM3 ganglioside enriched domains.  相似文献   

8.
Although low-density lipoprotein (LDL) receptor-mediated cholesterol uptake through clathrin-coated pits is now well understood, the molecular details and organizing principles for selective cholesterol uptake/efflux (reverse cholesterol transport, RCT) from peripheral cells remain to be resolved. It is not yet completely clear whether RCT between serum lipoproteins and the plasma membrane occurs primarily through lipid rafts/caveolae or from non-raft domains. To begin to address these issues, lipid raft/caveolae-, caveolae-, and non-raft-enriched fractions were resolved from purified plasma membranes isolated from L-cell fibroblasts and MDCK cells by detergent-free affinity chromatography and compared with detergent-resistant membranes isolated from the same cells. Fluorescent sterol exchange assays between lipoproteins (VLDL, LDL, HDL, apoA1) and these enriched domains provided new insights into supporting the role of lipid rafts/caveolae and caveolae in plasma membrane/lipoprotein cholesterol dynamics: (i) lipids known to be translocated through caveolae were detected (cholesteryl ester, triacylglycerol) and/or enriched (cholesterol, phospholipid) in lipid raft/caveolae fractions; (ii) lipoprotein-mediated sterol uptake/efflux from lipid rafts/caveolae and caveolae was rapid and lipoprotein specific, whereas that from non-rafts was very slow and independent of lipoprotein class; and (iii) the rate and lipoprotein specificity of sterol efflux from lipid rafts/caveolae or caveolae to lipoprotein acceptors in vitro was slower and differed in specificity from that in intact cells-consistent with intracellular factors contributing significantly to cholesterol dynamics between the plasma membrane and lipoproteins.  相似文献   

9.
The Niemann-Pick C1 (NPC1) protein regulates cholesterol transport from late endosomes-lysosomes to other intracellular compartments. In this article, cholesterol transport to caveolin-1 and caveolin-2 containing compartments, such as the trans-Golgi network (TGN) and plasma membrane caveolae, was examined in normal (NPC+/+), NPC heterozygous (NPC+/-), and NPC homozygous (NPC-/-) human fibroblasts. The expression and distribution of NPC1 in each cell type were similar, and characterized by a finely dispersed, granular staining pattern. The expression of caveolin-1 and caveolin-2 was increased in NPC+/- and NPC-/- fibroblasts, although the distribution in each cell type was similar and characterized by predominant staining of the TGN and plasma membrane. The TGN in NPC+/+ fibroblasts was relatively cholesterol-enriched, whereas the TGN in NPC+/- and NPC-/- fibroblasts was partially or completely cholesterol-deficient, respectively. Consistent with studies demonstrating the transport of cholesterol from the TGN to plasma membrane caveolae, the concentration of cholesterol in plasma membrane caveolae isolated from NPC+/- and NPC-/- fibroblasts was significantly decreased, even though the total concentration of plasma membrane cholesterol in each cell type was similar.These studies demonstrate that NPC1 regulates cholesterol transport to caveolin-1 and caveolin-2 containing compartments such as the TGN and plasma membrane caveolae.  相似文献   

10.
Phosphatidylinositol (PI) is essential for numerous cell functions and is generated by consecutive reactions catalyzed by CDP-diacylglycerol synthase (CDS) and PI synthase. In this study, we investigated the membrane organization of CDP-diacylglycerol synthesis. Separation of mildly disrupted A431 cell membranes on sucrose density gradients revealed cofractionation of CDS and PI synthase activities with cholesterol-poor, endoplasmic reticulum (ER) membranes and partial overlap with plasma membrane caveolae. Cofractionation of CDS activity with caveolae was also observed when low-buoyant density caveolin-enriched membranes were prepared using a carbonate-based method. However, immunoisolation studies determined that CDS activity localized to ER membrane fragments containing calnexin and type III inositol (1,4,5)-trisphosphate receptors but not to caveolae. Membrane fragmentation in neutral pH buffer established that CDP-diacylglycerol and PI syntheses were restricted to a subfraction of the calnexin-positive ER. In contrast to lipid rafts enriched for caveolin, cholesterol, and GM1 glycosphingolipids, the CDS-containing ER membranes were detergent soluble. In cell imaging studies, CDS and calnexin colocalized in microdomain-sized patches of the ER and also unexpectedly at the plasma membrane. These results demonstrate that key components of the PI pathway localize to nonraft, phospholipid-synthesizing microdomains of the ER that are also enriched for calnexin.  相似文献   

11.
Lipid rafts and caveolae are biochemically similar, specialized domains of the PM (plasma membrane) that cluster specific proteins. However, they are morphologically distinct, implying different, possibly complementary functions. Two-dimensional gel electrophoresis preceding identification of proteins by MS was used to compare the relative abundance of proteins in DRMs (detergent-resistant membranes) isolated from HUVEC (human umbilical-vein endothelial cells), and caveolae immunopurified from DRM fractions. Various signalling and transport proteins were identified and additional cell-surface biotinylation revealed the majority to be exposed, demonstrating their presence at the PM. In resting endothelial cells, the scaffold of immunoisolated caveolae consists of only few resident proteins, related to structure [CAV1 (caveolin-1), vimentin] and transport (V-ATPase), as well as the GPI (glycosylphosphatidylinositol)-linked, surface-exposed protein CD59. Further quantitative characterization by immunoblotting and confocal microscopy of well-known [eNOS (endothelial nitric oxide synthase) and CAV1], less known [SNAP-23 (23 kDa synaptosome-associated protein) and BASP1 (brain acid soluble protein 1)] and novel [C8ORF2 (chromosome 8 open reading frame 2)] proteins showed different subcellular distributions with none of these proteins being exclusive to either caveolae or DRM. However, the DRM-associated fraction of the novel protein C8ORF2 (approximately 5% of total protein) associated with immunoseparated caveolae, in contrast with the raft protein SNAP-23. The segregation of caveolae from lipid rafts was visually confirmed in proliferating cells, where CAV1 was spatially separated from eNOS, SNAP-23 and BASP1. These results provide direct evidence for the previously suggested segregation of transport and signalling functions between specialized domains of the endothelial plasma membrane.  相似文献   

12.
Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.  相似文献   

13.
Although cholesterol is an essential component of mammalian membranes, resolution of cholesterol organization in membranes and organelles (i.e. lysosomes) of living cells is hampered by the paucity of nondestructive, nonperturbing methods providing real time structural information. Advantage was taken of the fact that the emission maxima of a naturally occurring fluorescent sterol (dehydroergosterol) were resolvable into two structural forms, monomeric (356 and 375 nm) and crystalline (403 and 426 nm). Model membranes (sterol:phospholipid ratios in the physiological range, e.g. 0.5-1.0), subcellular membrane fractions (plasma membranes, lysosomal membranes, microsomes, and mitochondrial membranes), and lipid rafts/caveolae (plasma membrane cholesterol-rich microdomain purified by a nondetergent method) contained primarily monomeric sterol and only small quantities (i.e. 1-5%) of the crystalline form. In contrast, the majority of sterol in isolated lysosomes was crystalline. However, addition of sterol carrier protein-2 in vitro significantly reduced the proportion of crystalline dehydroergosterol in the isolated lysosomes. Multiphoton laser scanning microscopy (MPLSM) of living L-cell fibroblasts cultured with dehydroergosterol for the first time provided real time images showing the presence of monomeric sterol in plasma membranes, as well as other intracellular membrane structures of living cells. Furthermore, MPLSM confirmed that crystalline sterol colocalized in highest amounts with LysoTracker Green, a lysosomal marker dye. Although crystalline sterol was also detected in the cytoplasm, the extralysosomal crystalline sterol did not colocalize with BODIPY FL C(5)-ceramide, a Golgi marker, and crystals were not associated with the cell surface membrane. These noninvasive, nonperturbing methods demonstrated for the first time that multiple structural forms of sterol normally occurred within membranes, membrane microdomains (lipid rafts/caveolae), and intracellular organelles of living cells, both in vitro and visualized in real time by MPLSM.  相似文献   

14.
Caveolae are specialised vesicular microdomains of the plasma membrane. Using freeze-fracture immunogold labelling and stereoscopic imaging, the distribution of labelled caveolin 1 in caveolae of 3T3-L1 mouse fibroblast cells was shown. Immunogold-labelled caveolin structures surrounded the basolateral region of deeply invaginated caveolae like a belt whereas in the apical region distal to the plasma membrane, the caveolin labelling was nearly absent. Shallow caveolar membranes showed a dispersed caveolin labelling. After membrane cholesterol reduction by methyl-ß-cyclodextrin treatment, a dynamic re-distribution of labelled caveolin 1 and a flattening of caveolar structures was found. The highly curved caveolar membrane got totally flat, and the initial belt-like caveolin labelling disintegrated to a ring-like structure and later to a dispersed order. Intramembrane particle-free domains were still observable after cholesterol depletion and caveolin re-distribution. These results indicate that cholesterol interacting with caveolin structures at the basolateral part of caveolae is necessary for the maintenance of the deeply invaginated caveolar membranes.  相似文献   

15.
Caveolae are long-lived plasma membrane microdomains composed of caveolins, cavins, and a cholesterol-rich membrane. Little is known about how caveolae disassemble and how their coat components are degraded. We studied the degradation of caveolin-1 (CAV1), a major caveolar protein, in CV1 cells. CAV1 was degraded very slowly, but turnover could be accelerated by compromising caveolae assembly. Now, CAV1 became detectable in late endosomes (LE) and lysosomes where it was degraded. Targeting to the degradative pathway required ubiquitination and the endosomal sorting complex required for transport (ESCRT) machinery for inclusion into intralumenal vesicles in endosomes. A dual-tag strategy allowed us to monitor exposure of CAV1 to the acidic lumen of individual, maturing LE in living cells. Importantly, we found that "caveosomes," previously described by our group as independent organelles distinct from endosomes, actually correspond to late endosomal compartments modified by the accumulation of overexpressed CAV1 awaiting degradation. The findings led us to a revised model for endocytic trafficking of CAV1.  相似文献   

16.
We have made a comprehensive and quantitative analysis of the lipid composition of caveolae from primary rat fat cells and compared the composition of plasma membrane inside and outside caveolae. We isolated caveolae from purified plasma membranes using ultrasonication in carbonate buffer to disrupt the membrane, or extraction with nonionic detergent, followed by density gradient ultracentrifugation. The carbonate-isolated caveolae fraction was further immunopurified using caveolin antibodies. Carbonate-isolated caveolae were enriched in cholesterol and sphingomyelin, and the concentration was three- and twofold higher, respectively, in caveolae compared to the surrounding plasma membrane. The concentration of glycerophospholipids was similar suggesting that glycerophospholipids constitute a constant core throughout the plasma membrane. The composition of detergent-insoluble fractions of the plasma membrane was very variable between preparations, but strongly enriched in sphingomyelin and depleted of glycerophospholipids compared to carbonate-isolated caveolae; indicating that detergent extraction is not a suitable technique for caveolae preparation. An average adipocyte caveola contained about 22 x 10(3) molecules of cholesterol, 7.5 x 10(3) of sphingomyelin and 23 x 10(3) of glycerophospholipid. The glycosphingolipid GD3 was highly enriched in caveolae, whereas GM3, GM1 and GD1a were present inside as well as outside the caveolae membrane. GD1b, GT1b, GM2, GQ1b, sulfatide and lactosylceramide sulfate were not detected in caveolae.  相似文献   

17.
The uptake of cholesterol esters from high density lipoproteins (HDLs) is characterized by the initial movement of cholesterol esters into a reversible plasma membrane pool. Cholesterol esters are subsequently internalized to a nonreversible pool. Unlike the uptake of cholesterol from low density lipoproteins, cholesterol ester uptake from HDL does not involve the internalization and degradation of the particle and is therefore termed selective. The class B, type I scavenger receptor (SR-BI) has been identified as an HDL receptor and shown to mediate selective cholesterol ester uptake. SR-BI is localized to cholesterol- and sphingomyelin-rich microdomains called caveolae. Caveolae are directly involved in cholesterol trafficking. Therefore, we tested the hypothesis that caveolae are acceptors for HDL-derived cholesterol ether (CE). Our studies demonstrate that in Chinese hamster ovary cells expressing SR-BI, >80% of the plasma membrane associated CE is present in caveolae after 7.5 min of selective cholesterol ether uptake. We also show that excess, unlabeled HDL can extract the radiolabeled CE from caveolae, demonstrating that caveolae constitute a reversible plasma membrane pool of CE. Furthermore, 50% of the caveolae-associated CE can be chased into a nonreversible pool. We conclude that caveolae are acceptors for HDL-derived cholesterol ethers, and that caveolae constitute a reversible, plasma membrane pool of cholesterol ethers.  相似文献   

18.
19.
Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking.  相似文献   

20.
Vascular smooth muscle cells (SMCs) grown in primary culture are converted from a contractile to a synthetic phenotype. This includes a marked morphological reorganization, with loss of myofilaments and formation of a large ER-Golgi complex. In addition, the number of cell surface caveolae is distinctly reduced and the handling of lipoprotein-derived cholesterol changed. Here we used filipin as a marker to study the distribution of cholesterol in SMCs by electron microscopy. In contractile cells, filipin-sterol complexes were preferentially found in caveolae and adjacent ER cisternae (present in both leaflets of the membranes). After exposure to LDL or cholesterol, labeling with filipin was increased both in membrane organelles and in the cytoplasm. In contrast, treatment with mevinolin (a cholesterol synthesis inhibitor) or beta-cyclodextrin (a molecule that extracts cholesterol from cells) decreased the reaction with filipin but did not affect the close relation between the ER and the cell surface. In synthetic cells, filipin-sterol complexes were diffusely spread in the plasma membrane and the strongest cytoplasmic reaction was noted in endosomes/lysosomes, both under normal conditions and after incubation with LDL or cholesterol. On the basis of the present findings, we propose a mechanism for direct exchange of cholesterol between the plasma membrane and the ER and more active in contractile than in synthetic SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号