首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice. Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength.  相似文献   

2.
Wnt/β-catenin signaling is a critical regulator of skeletal physiology. However, previous studies have mainly focused on its roles in osteoblasts, while its specific function in osteoclasts is unknown. This is a clinically important question because neutralizing antibodies against Wnt antagonists are promising new drugs for bone diseases. Here, we show that in osteoclastogenesis, β-catenin is induced during the macrophage colony-stimulating factor (M-CSF)-mediated quiescence-to-proliferation switch but suppressed during the RANKL-mediated proliferation-to-differentiation switch. Genetically, β-catenin deletion blocks osteoclast precursor proliferation, while β-catenin constitutive activation sustains proliferation but prevents osteoclast differentiation, both causing osteopetrosis. In contrast, β-catenin heterozygosity enhances osteoclast differentiation, causing osteoporosis. Biochemically, Wnt activation attenuates whereas Wnt inhibition stimulates osteoclastogenesis. Mechanistically, β-catenin activation increases GATA2/Evi1 expression but abolishes RANKL-induced c-Jun phosphorylation. Therefore, β-catenin exerts a pivotal biphasic and dosage-dependent regulation of osteoclastogenesis. Importantly, these findings suggest that Wnt activation is a more effective treatment for skeletal fragility than previously recognized that confers dual anabolic and anti-catabolic benefits.  相似文献   

3.
A majority of people suffering from bone fractures fail to heal and develop a nonunion, which is a challenging orthopedic complication requiring complex and expensive treatment. Previous data showed the inhibition of some microRNAs (miRNAs or miRs) can enhance fracture healing. The objective of the present study is to explore effects of miR-367 on the osteoblasts growth and proliferation of mouse during fracture via the Wnt/β-catenin pathway by targeting PANX3. Primarily, the femur fracture model was successfully established in 66 (C57BL/6) 6-week–old male mice. To verify whether miR-367 target PANX3, we used the target prediction program and performed luciferase activity determination. Subsequently, to figure out the underlying regulatory roles of miR-367 in fracture, osteoblasts were elucidated by treatment with miR-367 mimic, miR-367 inhibitor, or siRNA against PANX3 to determine the expression of miR-367, siPANX3, β-catenin, and Wnt5b as well as cell proliferation and apoptosis. The results demonstrated that PANX3 was verified as a target gene of miR-367. MiR-367 was found to highly expressed but PANX3, β-catenin, and Wnt5b were observed poorly expressed in fracture mice. downregulated miR-367 increased the mRNA and protein expression of PANX3, β-catenin, and Wnt5b, increased cell growth, proliferation, and migration, while decreased cell apoptosis in osteoblasts. Altogether, our study demonstrates that the downregulation of miR-367 may promote osteoblasts growth and proliferation in fracture through the activation of the PANX3-dependent Wnt/β-catenin pathway.  相似文献   

4.
Type 1 diabetes (T1D) is correlated with osteopenia primarily due to low bone formation. Parathyroid hormone (PTH) is a known anabolic agent for bone, the anabolic effects of which are partially mediated through the Wnt/β-catenin signaling pathway. In the present study, we first determined the utility of intermittent PTH treatment in a streptozotocin-induced T1D mouse model. It was shown that the PTH-induced anabolic effects on bone mass and bone formation were attenuated in T1D mice compared with nondiabetic mice. Further, PTH treatment failed to activate β-catenin signaling in osteoblasts of T1D mice and was unable to improve osteoblast proliferation and differentiation. Next, the Col1–3.2 kb-CreERTM; β-cateninfx(ex3) mice were used to conditionally activate β-catenin in osteoblasts by injecting tamoxifen, and we addressed whether or not preactivation of β-catenin boosted the anabolic action of PTH on T1D-related bone loss. The results demonstrated that pretreatment with activation of osteoblastic β-catenin followed by PTH treatment outperformed PTH or β-catenin activation monotherapy and led to greatly improved bone structure, bone mass, and bone strength in this preclinical model of T1DM. Further analysis demonstrated that osteoblast proliferation and differentiation, as well as osteoprogenitors in the marrow, were all improved in the combination treatment group. These findings indicated a clear advantage of developing β-catenin as a target to improve the efficacy of PTH in the treatment of T1D-related osteopenia.  相似文献   

5.
Although osteoblasts express the angiogenic protein Angiopoietin 1 (Ang1), the role of Ang1 in bone formation remains largely unknown. Here we report that Ang1 overexpression in osteoblasts driven by the osteoblast-specific 2.3 kb alpha 1 type 1 collagen promoter results in increased bone mass in vivo. In Ang1-transgenic mice (Ang1-Tg), bone volume and bone parameters increased significantly compared with wild-type littermates, although the Ang1 receptor, Tie2 was not expressed in osteoblasts. Tie2 is primarily expressed in vascular endothelial cells, and Ang1-Tie2 signaling is reportedly crucial for angiogenesis. We found that the number of vascular endothelial cells was significantly elevated in Ang1-Tg mice compared with that of wild-type littermates, an increase accompanied by increased alkaline-phosphatase activity, a marker of osteoblast activation. The number of osteoclasts in the bone of Ang1-Tg mice did not differ from wild-type littermates. These results indicate that angiogenesis induced by Ang1 expressed in osteoblasts is coupled with osteogenesis.  相似文献   

6.
This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ~2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption.  相似文献   

7.
8.
Thyroid hormone (T(3)) acts in chondrocytes and bone-forming osteoblasts to control bone development and maintenance, but the signaling pathways mediating these effects are poorly understood. Thrb(PV/PV) mice have a severely impaired pituitary-thyroid axis and elevated thyroid hormone levels due to a dominant-negative mutant T(3) receptor (TRβ(PV)) that cannot bind T(3) and interferes with the actions of wild-type TR. Thrb(PV/PV) mice have accelerated skeletal development due to unknown mechanisms. We performed microarray studies in primary osteoblasts from wild-type mice and Thrb(PV/PV) mice. Activation of the canonical Wnt signaling in Thrb(PV/PV) mice was confirmed by in situ hybridization analysis of Wnt target gene expression in bone during postnatal growth. By contrast, T(3) treatment inhibited Wnt signaling in osteoblastic cells, suggesting that T(3) inhibits the Wnt pathway by facilitating proteasomal degradation of β-catenin and preventing its accumulation in the nucleus. Activation of the Wnt pathway in Thrb(PV/PV) mice, however, results from a gain of function for TRβ(PV) that stabilizes β-catenin despite the presence of increased thyroid hormone levels. These studies demonstrate novel interactions between T(3) and Wnt signaling pathways in the regulation of skeletal development and bone formation.  相似文献   

9.
Mechanical loading of bone induces interstitial fluid flow, leading to fluid shear stress (FSS) of osteoblasts. FSS rapidly increases the intracellular calcium concentration ([Ca(2+)]) and nitric oxide (NO) synthesis in osteoblasts and activates the protein kinase Akt. Activated Akt stimulates osteoblast proliferation and survival, but the mechanism(s) leading to Akt activation is not well defined. Using pharmacological and genetic approaches in primary human and mouse osteoblasts and mouse MC3T3 osteoblast-like cells, we found that Akt activation by FSS occurred through two parallel pathways; one required calcium stimulation of NO synthase and NO/cGMP/protein kinase G II-dependent activation of Src, and the other required calcium activation of FAK and Src, independent of NO. Both pathways cooperated to increase PI3K-dependent Akt phosphorylation and were necessary for FSS to induce nuclear translocation of β-catenin, c-fos, and cox-2 gene expression and osteoblast proliferation. These data explain how mechanical stimulation of osteoblasts leads to increased signaling through a growth regulatory pathway essential for maintaining skeletal integrity.  相似文献   

10.
Transforming growth factor-beta (TGF-beta) is abundant in bone matrix and has been shown to regulate the activity of osteoblasts and osteoclasts in vitro. To explore the role of endogenous TGF-(beta) in osteoblast function in vivo, we have inhibited osteoblastic responsiveness to TGF-beta in transgenic mice by expressing a cytoplasmically truncated type II TGF-beta receptor from the osteocalcin promoter. These transgenic mice develop an age-dependent increase in trabecular bone mass, which progresses up to the age of 6 months, due to an imbalance between bone formation and resorption during bone remodeling. Since the rate of osteoblastic bone formation was not altered, their increased trabecular bone mass is likely due to decreased bone resorption by osteoclasts. Accordingly, direct evidence of reduced osteoclast activity was found in transgenic mouse skulls, which had less cavitation and fewer mature osteoclasts relative to skulls of wild-type mice. These bone remodeling defects resulted in altered biomechanical properties. The femurs of transgenic mice were tougher, and their vertebral bodies were stiffer and stronger than those of wild-type mice. Lastly, osteocyte density was decreased in transgenic mice, suggesting that TGF-beta signaling in osteoblasts is required for normal osteoblast differentiation in vivo. Our results demonstrate that endogenous TGF-beta acts directly on osteoblasts to regulate bone remodeling, structure and biomechanical properties.  相似文献   

11.
Fibroblast growth factor 2 (FGF2) positively modulates osteoblast differentiation and bone formation. However, the mechanism(s) is not fully understood. Because the Wnt canonical pathway is important for bone homeostasis, this study focuses on modulation of Wnt/β-catenin signaling using Fgf2(-/-) mice (FGF2 all isoforms ablated), both in the absence of endogenous FGF2 and in the presence of exogenous FGF2. This study demonstrates a role of endogenous FGF2 in bone formation through Wnt signaling. Specifically, mRNA expression for the canonical Wnt genes Wnt10b, Lrp6, and β-catenin was decreased significantly in Fgf2(-/-) bone marrow stromal cells during osteoblast differentiation. In addition, a marked reduction of Wnt10b and β-catenin protein expression was observed in Fgf2(-/-) mice. Furthermore, Fgf2(-/-) osteoblasts displayed marked reduction of inactive phosphorylated glycogen synthase kinase-3β, a negative regulator of Wnt/β-catenin pathway as well as a significant decrease of Dkk2 mRNA, which plays a role in terminal osteoblast differentiation. Addition of exogenous FGF2 promoted β-catenin nuclear accumulation and further partially rescued decreased mineralization in Fgf2(-/-) bone marrow stromal cell cultures. Collectively, our findings suggest that FGF2 stimulation of osteoblast differentiation and bone formation is mediated in part by modulating the Wnt pathway.  相似文献   

12.
13.
14.
We evaluated the role of CCL20 (MIP-3alpha) chemokine in cells directly involved in the remodeling of bone tissue (osteoblasts and osteoclasts) and we confirmed its expression in the subchondral bone tissue of rheumatoid arthritis (RA) patients. The expression of CCL20 and of its receptor CCR6 was evaluated in osteoblasts isolated from bone tissue of post-traumatic (PT) patients. Functional tests were performed to evaluate osteoblast proliferation and matrix protein modulation. Immunohistochemical analysis for CCR6, CCL20, and RANKL was performed on bone samples from RA patients. The role of CCL20 was then analyzed in osteoclast differentiation. We found that in basal conditions CCR6, but not its ligand CCL20, was highly expressed by osteoblasts. Functional analysis on osteoblasts showed that CCL20 significantly increased cellular proliferation but did not affect matrix protein expression. Pro-inflammatory cytokines significantly induced the release of CCL20 and RANKL by human osteoblasts but did not modulate CCR6 expression. Increased expression of CCR6, CCL20, and RANKL was confirmed in RA subchondral bone tissue biopsies. We demonstrated that CCL20 was also an earlier inducer of osteoclast differentiation by increasing the number of pre-osteoclasts, thus favoring cell fusion and MMP-9 release. Our results add new insight to the important role of the CCL20/CCR6, RANKL system in the bone tissue of RA. The contemporary action of CCL20 on osteoblasts and osteoclasts involved in the maintenance of bone tissue homeostasis demonstrates the important role of this compartment in the evolution of RA, by showing a clear uncoupling between new bone formation and bone resorption.  相似文献   

15.
PGE(2) acts as a potent stimulator of bone resorption in several disorders including osteoarthritis and periodontitis. Three PGE synthases (PGES) were isolated for PGE(2) production, but which PGES has the major role in inflammatory bone resorption is still unclear. In this study, we examined the role of PGE(2) in LPS-induced bone resorption using membrane-bound PGES (mPGES)-1-deficient mice (mPges1(-/-)). In osteoblasts from wild-type mice, PGE(2) production was greatly stimulated by LPS following the expression of cyclooxygenase 2 and mPGES-1 mRNA, whereas no PGE(2) production was found in osteoblasts from mPges1(-/-). LPS administration reduced the bone volume in wild-type femur that was associated with an increased number of osteoclasts. In mPges1(-/-), however, LPS-induced bone loss was reduced. We next examined whether mPGES-1 deficiency could alter the alveolar bone loss in LPS-induced experimental periodontitis. LPS was injected into the lower gingiva and bone mineral density of alveolar bone was measured. LPS induced the loss of alveolar bone in wild-type, but not in mPges1(-/-) mice, suggesting an mPGES-1 deficiency resistant to LPS-induced periodontal bone resorption. To understand the pathway of LPS-induced PGE(2) production in osteoblast, we used C3H/HeJ mice with mutated tlr4. Osteoblasts from C3H/HeJ mice did not respond to LPS, and PGE(2) production was not altered at all. LPS-induced bone loss in the femur was also impaired in C3H/HeJ mice. Thus, LPS binds to TLR4 on osteoblasts that directly induce mPGES-1 expression for PGE(2) synthesis, leading to subsequent bone resorption. Therefore, mPGES-1 may provide a new target for the treatment of inflammatory bone disease.  相似文献   

16.
The balance between bone resorption and bone formation involves the coordinated activities of osteoblasts and osteoclasts. Communication between these two cell types is essential for maintenance of normal bone homeostasis; however, the mechanisms regulating this cross talk are not completely understood. Many factors that mediate differentiation and function of both osteoblasts and osteoclasts have been identified. The LIM protein Limd1 has been implicated in the regulation of stress osteoclastogenesis through an interaction with the p62/sequestosome protein. Here we show that Limd1 also influences osteoblast progenitor numbers, differentiation, and function. Limd1−/− calvarial osteoblasts display increased mineralization and accelerated differentiation. While no significant differences in osteoblast number or function were detected in vivo, bone marrow stromal cells isolated from Limd1−/− mice contain significantly more osteoblast progenitors compared to wild type controls when cultured ex vivo. Furthermore, we observed a significant increase in nuclear β-catenin staining in differentiating Limd1−/− calvarial osteoblasts suggesting that Limd1 is a negative regulator of canonical Wnt signaling in osteoblasts. These results demonstrate that Limd1 influences not only stress osteoclastogenesis but also osteoblast function and osteoblast progenitor commitment. Together, these data identify Limd1 as a novel regulator of both bone osetoclast and bone osteoblast development and function.  相似文献   

17.
18.
Recent studies have proposed a role for serotonin and its transporter in regulation of bone cell function. In the present study, we examined the in vitro effects of serotonin and the serotonin transporter inhibitor fluoxetine "Prozac" on osteoblasts and osteoclasts. Human mononuclear cells were differentiated into osteoclasts in the presence of serotonin or fluoxetine. Both compounds affected the total number of differentiated osteoclasts as well as bone resorption in a bell-shaped manner. RT-PCR on the human osteoclasts demonstrated several serotonin receptors, the serotonin transporter, and the rate-limiting enzyme in serotonin synthesis, tryptophan hydroxylase 1 (Tph1). Tph1 expression was also found in murine osteoblasts and osteoclasts, indicating an ability to produce serotonin. In murine pre-osteoclasts (RAW264.7), serotonin as well as fluoxetine affected proliferation and NFkappaB activity in a biphasic manner. Proliferation of human mesenchymal stem cells (MSC) and primary osteoblasts (NHO), and 5-HT2A receptor expression was enhanced by serotonin. Fluoxetine stimulated proliferation of MSC and murine preosteoblasts (MC3T3-E1) in nM concentrations, microM concentrations were inhibitory. The effect of fluoxetine seemed direct, probably through 5-HT2 receptors. Serotonin-induced proliferation of MC3T3-E1 cells was inhibited by the PKC inhibitor (GF109203) and was also markedly reduced when antagonists of the serotonin receptors 5-HT2B/C or 5-HT2A/C were added. Serotonin increased osteoprotegerin (OPG) and decreased receptor activator of NF-kappaB ligand (RANKL) secretion from osteoblasts, suggesting a role in osteoblast-induced inhibition of osteoclast differentiation, whereas fluoxetine had the opposite effect. This study further describes possible mechanisms by which serotonin and the serotonin transporter can affect bone cell function.  相似文献   

19.
20.
We show that prostacyclin production is increased in bone and osteocytes from sclerostin (Sost) knockout mice which have greatly increased bone mass. The addition of prostacyclin or a prostacyclin analog to bone forming osteoblasts enhances differentiation and matrix mineralization of osteoblasts. The increase in prostacyclin synthesis is linked to increases in β-catenin concentrations and activity as shown by enhanced binding of lymphoid enhancer factor, Lef1, to promoter elements within the prostacyclin synthase promoter. Blockade of Wnt signaling reduces prostacyclin production in osteocytes. Increased prostacyclin production by osteocytes from sclerostin deficient mice could potentially contribute to the increased bone formation seen in this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号