首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We have analyzed the structure and the regulation of Krox-20, a mouse zinc finger-encoding gene which is transiently activated following serum stimulation of quiescent fibroblast cells in culture. The gene is localized on chromosome 10, band B5, in the mouse, and the homologous human gene also maps to chromosome 10 (region q21.1 to q22.1). Alternative splicing of the 5'-most intron of the Krox-20 gene gives rise to mRNAs encoding putative zinc finger proteins with different N termini. The first exon contains a sequence element with strong similarity to the c-fos proto-oncogene serum response element (SRE). This element can functionally substitute for the c-fos SRE, and it binds the same nuclear protein. It is probably responsible for the serum induction of Krox-20, possibly in combination with a weaker SRE located in the 5'-flanking region of the gene. Our findings suggest that c-fos, Krox-20, and a number of immediate-early serum response genes are coregulated and that the SRE and its cognate protein are essential components of this regulatory pathway.  相似文献   

6.
7.
8.
9.
The structure of Krox-24, a mouse zinc-finger-encoding gene that is transiently activated during G0/G1 transition, has been established. Krox-24 is located on mouse chromosome 18, bands C-D. The gene product, as anticipated for a putative DNA-binding protein, is localized within the cell nucleus. The Krox-24 5'-flanking region contains a series of serum response elements (SREs) similar to the SRE observed upstream of the c-fos proto-oncogene. These elements can substitute for the c-fos SRE, their effect is cumulative and they bind the same cellular factor, the serum response factor (SRF), as the c-fos SRE. This suggests that the SRE and its cognate protein are likely to be involved in the regulation of Krox-24 and presumably of other immediate-early serum response genes. SRE and SRF therefore constitute key components in the regulatory pathway leading from mitogenic stimulation to cellular proliferation.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Abstract: Krox proteins are important regulators of development and terminal differentiation. Using the rat glial progenitor cell line CG-4 as a model system for oligodendrocyte differentiation, we show that on the RNA level Krox-24 is the predominant member of the Krox family in these cells. Similar results were also obtained on the protein level as the major Krox protein from CG-4 cell extracts reacted specifically with an antibody against Krox-24. Whereas Krox-24 RNA and protein were abundant in undifferentiated CG-4 cells, a dramatic decrease in expression was detected after a 3–5-day period of differentiation during which we observed a reciprocal increase in the levels of myelin basic protein expression. Importantly, regulation of Krox-24 expression was very similar in CG-4 cells and primary oligodendrocyte cultures. When expression of Krox-24 in differentiating CG-4 cells was followed on a closer time scale, we observed a sharp and transient increase in Krox-24 RNA, protein, and DNA binding activity immediately after the onset of differentiation followed by an equally rapid decrease. This expression pattern implicates Krox-24 both in maintenance of the undifferentiated state and in the immediate early phase of differentiation of CG-4 cells and possibly oligodendrocytes.  相似文献   

19.
20.
Scaffold proteins for MAP kinase (MAPK) signalling modules play an important role in the specific and efficient signal transduction of the relevant MAPK cascades. Here, we investigated the function of the scaffolding protein c-Jun NH(2)-terminal kinase (JNK)-associated leucine zipper protein (JLP) by depleting it in cultured cells using a short hairpin RNA (shRNA) against human JLP. HeLa and DLD-1 cells stably expressing the shRNA showed a defect in cell migration. The re-expression of full-length shRNA-resistant mouse JLP rescued the impaired cell migration of the JLP-depleted HeLa cells; whereas, a C-terminal deletion mutant of mouse JLP, which failed to bind the G protein G(alpha13), showed little or no effect on the cell migration defect. Furthermore, although a constitutively active G(alpha13) enhanced the migration of control HeLa cells, the G(alpha13)-induced cell migration was significantly suppressed in the JLP-depleted HeLa cells. Taken together, these results suggest that JLP regulates cell migration through an interaction with G(alpha13).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号