首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the plasma membrane is the terminal destination for glycosylphosphatidylinositol (GPI) proteins in higher eukaryotes, cell wall-attached GPI proteins (GPI-CWPs) are found in many fungal species. In yeast, some of the cis-requirements directing localization of GPI proteins to the plasma membrane or cell wall are now understood. However, it remains to be determined how Aspergillus fumigatus, an opportunistic fungal pathogen, signals, and sorts GPI proteins to either the plasma membrane or the cell wall. In this study, chimeric green fluorescent proteins (GFPs) were constructed as fusions with putative C-terminal GPI signal sequences from A. fumigatus Mp1p, Gel1p, and Ecm33p, as well as site-directed mutations thereof. By analyzing cellular localization of chimeric GFPs using Western blotting, electron microscopy, and fluorescence microscopy, we showed that, in contrast to yeast, a single Lys residue at the ω-1 or ω-2 site alone could retain GPI-anchored GFP in the plasma membrane. Although the signal for cell wall distribution has not been identified yet, it appeared that the threonine/serine-rich region at the C-terminal half of AfMp1 was not required for cell wall distribution. Based on our results, the cis-requirements directing localization of GPI proteins in A. fumigatus are different from those in yeast.  相似文献   

2.
Mao Y  Zhang Z  Wong B 《Molecular microbiology》2003,50(5):1617-1628
Glycophosphatidylinositol (GPI)-anchored proteins account for 26-35% of the Candida albicans cell wall. To understand the signals that regulate these proteins' cell surface localization, green fluorescent protein (GFP) was fused to the N- and C-termini of the C. albicans cell wall proteins (CWPs) Hwp1p, Als3p and Rbt5p. C. albicans expressing all three fusion proteins were fluorescent at the cell surface. GFP was released from membrane fractions by PI-PLC and from cell walls by beta-glucanase, which implied that GFP was GPI-anchored to the plasma membrane and then covalently attached to cell wall glucans. Twenty and 25 amino acids, respectively, from the N- and C-termini of Hwp1p were sufficient to target GFP to the cell surface. C-terminal substitutions that are permitted by the omega rules (G613D, G613N, G613S, G613A, G615S) did not interfere with GFP localization, whereas some non-permitted substitutions (G613E, G613Q, G613R, G613T and G615Q) caused GFP to accumulate in intracellular ER-like structures and others (G615C, G613N/G615C and G613D/G615C) did not. These results imply that (i) GFP fusions can be used to analyse the N- and C-terminal signal peptides of GPI-anchored CWPs, (ii) the omega amino acid in Hwp1p is G613, and (iii) C can function at the omega+2 position in C. albicans GPI-anchored proteins.  相似文献   

3.
Prion diseases are a group of transmissible, invariably fatal neurodegenerative diseases that affect both humans and animals. According to the protein-only hypothesis, the infectious agent is a prion (proteinaceous infectious particle) that is composed primarily of PrPSc, the disease-associated isoform of the cellular prion protein, PrP. PrPSc arises from the conformational change of the normal, glycosylphosphatidylinositol (GPI)-anchored protein, PrPC. The mechanism by which this process occurs, however, remains enigmatic. Rabbits are one of a small number of mammalian species reported to be resistant to prion infection. Sequence analysis of rabbit PrP revealed that its C-terminal amino acids differ from those of PrP from other mammals and may affect the anchoring of rabbit PrP through its GPI anchor. Using a cell culture model, this study investigated the effect of the rabbit PrP-specific C-terminal amino acids on the addition of the GPI anchor to PrPC, PrPC localization, and PrPSc formation. The incorporation of rabbit-specific C-terminal PrP residues into mouse PrP did not affect the addition of a GPI anchor or the localization of PrP. However, these residues did inhibit PrPSc formation, suggesting that these rabbit-specific residues interfere with a C-terminal PrPSc interaction site.Prion diseases, traditionally known as transmissible spongiform encephalopathies (TSE), are a group of invariably fatal neurodegenerative diseases that affect both humans and animals. According to the protein-only hypothesis, an abnormal isoform of the host-encoded prion protein (PrPC), referred to as PrPSc, is the sole or major component of the infectious agent causing these diseases (33). These disorders affect a wide range of mammals and include diseases such as Creutzfeldt-Jakob disease (CJD), variant CJD, Gerstmann-Straüssler-Scheinker (GSS) syndrome, kuru, and fatal familial insomnia (FFI) in humans, scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, and bovine spongiform encephalopathy (BSE) in cattle. The term “prion” was first used to describe the unique infectious agent and was derived from “proteinaceous infectious particle” to distinguish it from conventional pathogens such as bacteria and viruses (33).To date, rabbits are one of the few mammalian species reported to be resistant to prion infection. Rabbits do not develop clinical disease after inoculation with brain tissue from individuals affected by the human prion diseases CJD and kuru, or by a number of animal forms of the disease, including scrapie and transmissible mink encephalopathy (TME) (12). In addition, mouse neuroblastoma (MNB) cells overexpressing rabbit PrP are also resistant to prion infection (45). Evidence that rabbit cells per se have the correct cellular machinery to support prion propagation has come from studies using the rabbit kidney epithelial cell line RK13. Upon transfection with appropriate PrP-expressing transgenes, these cells are a highly efficient and robust model of prion infection (6, 25, 41, 43). RK13 cells do not have detectable levels of endogenous rabbit PrPC and are therefore ideal for studying exogenous PrPC and the propagation of prions from different species (6). Originally, it was shown that RK13 cells overexpressing ovine PrP became susceptible to infection with scrapie (43), and more recently, RK13 cells expressing rodent PrPC, from either the mouse or the bank vole, were readily infected by prions adapted to and propagated in these two species (6, 41). RK13 cells expressing human PrPC, however, were resistant to infection with human prions derived directly from a patient with sporadic CJD (25). Since RK13 cells overexpressing PrP are a well-established model of prion propagation, we can therefore conclude that while these cells apparently have the appropriate cellular machinery to support prion propagation, it may be a characteristic of the rabbit prion protein itself that results in the resistance of this species to prion infection. However, the loss of a cellular cofactor may also be a contributing factor.Analysis of the rabbit PrP amino acid sequence shows that it has all the features previously described for members of the PrP protein family, including an N-terminal signal peptide, an octapeptide repeat region, and a C-terminal signal sequence (26). While amino acid sequence comparison of both mouse and rabbit PrP species reveals 87% sequence homology, there are 22 amino acid differences between the two, and several of these reside in regions of PrP known to be important in PrPSc formation. In scrapie-infected MNB cells, the residues Gly99 and Met108 within the N terminus, Ser173 within the central region, and Ile214 within the C terminus of rabbit PrP were shown to inhibit PrPSc generation when incorporated into mouse PrP, suggesting that multiple amino acid residues in rabbit PrP inhibit PrPSc formation (45). Approximately one-third (9/33 residues in the immature sequence) of the amino acid difference between mouse and rabbit PrPs was shown to occur at the glycosylphosphatidylinositol (GPI) anchor attachment site (see Fig. S1 in the supplemental material). As yet, studies involving this region of rabbit PrP have not been performed. Therefore, this region of rabbit PrP may provide further insight into the resistance of rabbits to prion infection.GPI anchor addition occurs via a transamination reaction in the endoplasmic reticulum (ER) following cleavage of the C-terminal signal sequence (39). There is no consensus sequence with which to identify the C-terminal cleavage site, but there are three key C-terminal elements: (i) the cleavage site, or ω site, where the GPI anchor attaches to the COOH group of the ω amino acid; (ii) a hydrophilic spacer region of 8 to 12 amino acids (ω + 1 up to ω + 10); and (iii) a hydrophobic region of 10 to 20 amino acids (ω + 11 onwards) (9). Analysis of known GPI-anchored proteins has given rise to sequence motifs in the C-terminal signal peptide allowing the prediction of the ω site of proteins. Due to the complexity of experimentally determining the ω site of GPI-anchored proteins, relatively few of the many known GPI-anchored proteins have had their ω sites determined (36 of 340 proteins in 2008) (32) The ω site of hamster PrP was determined experimentally to be at amino acid 231 (34) and is predicted to be at the same site for PrPs from all mammals, based on amino acid sequence comparison. Amino acid substitutions near the ω site of mouse PrP revealed that mouse PrP has an ω site at residue 230 (17). It was also shown that single amino acid substitutions at and near the ω site of mouse PrP affect the anchoring and conversion efficiency of PrP (17). It is therefore possible that the amino acids at the C terminus and within the GPI anchor signal sequence of rabbit PrP lead to the resistance to prion infection.To date, no protein structures containing a GPI anchor have been determined by X-ray crystallography, and although the nuclear magnetic resonance (NMR) structures of mouse and rabbit PrP have been solved, they do not contain any structural information for the residues immediately preceding the GPI anchor. We therefore created a mutant mouse PrP model containing rabbit PrP-specific amino acids at the ω site to investigate whether these residues are involved in rabbit resistance to prion infection. Here we demonstrate that the GPI anchor attachment site is an important site that controls the ability of PrP to be converted into PrPSc and that residues ω and ω + 1 of PrP are important modulators of this pathogenic process.  相似文献   

4.
Effects of fatty acids on translocation of the γ- and ε-subspecies of protein kinase C (PKC) in living cells were investigated using their proteins fused with green fluorescent protein (GFP). γ-PKC–GFP and ε-PKC–GFP predominated in the cytoplasm, but only a small amount of γ-PKC–GFP was found in the nucleus. Except at a high concentration of linoleic acid, all the fatty acids examined induced the translocation of γ-PKC–GFP from the cytoplasm to the plasma membrane within 30 s with a return to the cytoplasm in 3 min, but they had no effect on γ-PKC–GFP in the nucleus. Arachidonic and linoleic acids induced slow translocation of ε-PKC–GFP from the cytoplasm to the perinuclear region, whereas the other fatty acids (except for palmitic acid) induced rapid translocation to the plasma membrane. The target site of the slower translocation of ε-PKC–GFP by arachidonic acid was identified as the Golgi network. The critical concentration of fatty acid that induced translocation varied among the 11 fatty acids tested. In general, a higher concentration was required to induce the translocation of ε-PKC–GFP than that of γ-PKC–GFP, the exceptions being tridecanoic acid, linoleic acid, and arachidonic acid. Furthermore, arachidonic acid and the diacylglycerol analogue (DiC8) had synergistic effects on the translocation of γ-PKC–GFP. Simultaneous application of arachidonic acid (25 μM) and DiC8 (10 μM) elicited a slow, irreversible translocation of γ-PKC– GFP from the cytoplasm to the plasma membrane after rapid, reversible translocation, but a single application of arachidonic acid or DiC8 at the same concentration induced no translocation.These findings confirm the involvement of fatty acids in the translocation of γ- and ε-PKC, and they also indicate that each subspecies has a specific targeting mechanism that depends on the extracellular signals and that a combination of intracellular activators alters the target site of PKCs.  相似文献   

5.
6.
Fatty acid desaturases play an important role in maintaining the appropriate structure and function of biological membranes. The biochemical characterization of integral membrane desaturases, particularly ω3 and ω6 desaturases, has been limited by technical difficulties relating to the acquisition of large quantities of purified proteins, and by the fact that functional activities of these proteins were only tested in an NADH-initiated reaction system. The main aim of this study was to reconstitute an NADPH-dependent reaction system in vitro and investigate the kinetic properties of Mortierella alpina ω3 and ω6 desaturases in this system. After expression and purification of the soluble catalytic domain of NADPH–cytochrome P450 reductase, the NADPH-dependent fatty acid desaturation was reconstituted for the first time in a system containing NADPH, NADPH–cytochrome P450 reductase, cytochrome b5, M. alpina ω3 and ω6 desaturase and detergent. In this system, the maximum activity of ω3 and ω6 desaturase was 213.4 ± 9.0 nmol min−1 mg−1 and 10.0 ± 0.5 nmol min−1 mg−1, respectively. The highest kcat/Km value of ω3 and ω6 desaturase was 0.41 µM−1 min−1 and 0.09 µM−1 min−1 when using linoleoyl CoA (18:2 ω6) and oleoyl CoA (18:1 ω9) as substrates, respectively. M. alpina ω3 and ω6 desaturases were capable of using NADPH as reductant when mediated by NADPH–cytochrome P450 reductase; although, their efficiency is distinguishable from NADH-dependent desaturation. These results provide insights into the mechanisms underlying ω3 and ω6 fatty acid desaturation and may facilitate the production of important fatty acids in M. alpina.  相似文献   

7.
Despite progress in defining human leukocyte antigen (HLA) alleles for anti-citrullinated-protein-autoantibody-positive (ACPA+) rheumatoid arthritis (RA), identifying HLA alleles for ACPA-negative (ACPA) RA has been challenging because of clinical heterogeneity within clinical cohorts. We imputed 8,961 classical HLA alleles, amino acids, and SNPs from Immunochip data in a discovery set of 2,406 ACPA RA case and 13,930 control individuals. We developed a statistical approach to identify and adjust for clinical heterogeneity within ACPA RA and observed independent associations for serine and leucine at position 11 in HLA-DRβ1 (p = 1.4 × 10−13, odds ratio [OR] = 1.30) and for aspartate at position 9 in HLA-B (p = 2.7 × 10−12, OR = 1.39) within the peptide binding grooves. These amino acid positions induced associations at HLA-DRB103 (encoding serine at 11) and HLA-B08 (encoding aspartate at 9). We validated these findings in an independent set of 427 ACPA case subjects, carefully phenotyped with a highly sensitive ACPA assay, and 1,691 control subjects (HLA-DRβ1 Ser11+Leu11: p = 5.8 × 10−4, OR = 1.28; HLA-B Asp9: p = 2.6 × 10−3, OR = 1.34). Although both amino acid sites drove risk of ACPA+ and ACPA disease, the effects of individual residues at HLA-DRβ1 position 11 were distinct (p < 2.9 × 10−107). We also identified an association with ACPA+ RA at HLA-A position 77 (p = 2.7 × 10−8, OR = 0.85) in 7,279 ACPA+ RA case and 15,870 control subjects. These results contribute to mounting evidence that ACPA+ and ACPA RA are genetically distinct and potentially have separate autoantigens contributing to pathogenesis. We expect that our approach might have broad applications in analyzing clinical conditions with heterogeneity at both major histocompatibility complex (MHC) and non-MHC regions.  相似文献   

8.
9.

Background

The recently solved solution structure of HCV (hepatitis C virus) p7 ion channel provides a solid structure basis for drug design against HCV infection. In the p7 channel the ligand amantadine (or rimantadine) was determined in a hydrophobic pocket. However the pharmocophore (−NH2) of the ligand was not assigned a specific binding site.

Results

The possible binding sites for amino group of adamantane derivatives is studied based on the NMR structure of p7 channel using QM calculation and molecular modeling. In the hydrophobic cavity and nearby three possible binding sites are proposed: His17, Phe20, and Trp21. The ligand binding energies at the three binding sites are studied using high level QM method CCSD(T)/6–311+G(d,p) and AutoDock calculations, and the interaction details are analyzed. The potential application of the binding sites for rational inhibitor design are discussed.

Conclusions

Some useful viewpoints are concluded as follows. (1) The amino group (−NH2) of adamantane derivatives is protonated (−NH3 +), and the positively charged cation may form cation-π interactions with aromatic amino acids. (2) The aromatic amino acids (His17, Phe20, and Trp21) are the possible binding sites for the protonated amino group (−NH3 +) of adamantane derivatives, and the cation-π bond energies are 3 to 5 times stronger than the energies of common hydrogen bonds. (3) The higher inhibition potent of rimantadine than amantadine probably because of its higher pKa value (pKa = 10.40) and the higher positive charge in the amino group. The potential application of p7 channel structure for inhibitor design is discussed.  相似文献   

10.
Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation. Here we aim to determine whether ω-3 PUFAs antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. Treatment of ω-3 PUFAs suppresses lipopolysaccharide (LPS)-induced cytokine expression in macrophages. Luciferase reporter assays, electrophoretic mobility shift assays (EMSA) and Chromatin immunoprecipitation (ChIP) assays show that treatment of macrophages with ω-3 PUFAs significantly inhibits LPS-induced NF-κB signaling. Interestingly, DHA also increases expression, phosphorylation and activity of the major isoform α1AMPK, which further leads to SIRT1 over-expression. More importantly, DHA mimics the effect of SIRT1 on deacetylation of the NF-κB subunit p65, and the ability of DHA to deacetylate p65 and inhibit its signaling and downstream cytokine expression require SIRT1. In conclusion, ω-3 PUFAs negatively regulate macrophage inflammation by deacetylating NF-κB, which acts through activation of AMPK/SIRT1 pathway. Our study defines AMPK/SIRT1 as a novel cellular mediator for the anti-inflammatory effects of ω-3 PUFAs.  相似文献   

11.
The epidermal cells of the sporophyte haustorium of Polytrichum formosum are modified into transfer cells. These cells are located in a strategic place allowing them to control the exchanges between the two generations. Their plasmalemma creates proton gradients (Δψ and ΔpH) which increase during the development of the sporophyte. As the sporophyte grows from 2 to 4 cm long, the pH of the incubation medium of the haustoria decreases from 5.2 to 4.3, and the transmembrane potential difference (PD) hyperpolarizes form −140 to −210 millivolts. These gradients become rapidly larger than that generated by the plasmalemma of the basal cells of the sporophyte. They are used to energize the uptake of the solutes present in the apoplast of the gametophyte, particularly the amino acids. Below 20 micromolar α-aminoisobutyric acid uptake in the transfer cells is mediated by a saturable system and is optimal at acidic pH (4.0 and 4.5). It is strongly inhibited by compounds dissipating both Δψ and ΔpH (10 micromolar carbonylcyanide-m-chlorophenyl hydrazone) or only Δψ (0.1 molar KCl). The absorption of α-aminoisobutyric acid and of the other neutral amino acids tested induces an alkalinization of the medium and a depolarization of membrane potential difference which is concentration dependent. These data show that the uptake of amino acids by the transfer cells of the haustorium is a secondary translocation (proton-amino acid symport) energized by a primary translocation (proton efflux). More particularly, they show that transfer cells possess a membrane enzymic equipment particularly efficient to achieve the uptake of the solutes leaked in the apoplast from other cell types.  相似文献   

12.
Mammalian cell viability is dependent on the supply of the essential fatty acids (EFAs) linoleic and α-linolenic acid. EFAs are converted into ω3- and ω6-polyunsaturated fatty acids (PUFAs), which are essential constituents of membrane phospholipids and precursors of eicosanoids, anandamide and docosanoids. Whether EFAs, PUFAs and eicosanoids are essential for cell viability has remained elusive. Here, we show that deletion of Δ6-fatty acid desaturase (FADS2) gene expression in the mouse abolishes the initial step in the enzymatic cascade of PUFA synthesis. The lack of PUFAs and eicosanoids does not impair the normal viability and lifespan of male and female fads2−/− mice, but causes sterility. We further provide the molecular evidence for a pivotal role of PUFA-substituted membrane phospholipids in Sertoli cell polarity and blood–testis barrier, and the gap junction network between granulosa cells of ovarian follicles. The fads2−/− mouse is an auxotrophic mutant. It is anticipated that FADS2 will become a major focus in membrane, haemostasis, inflammation and atherosclerosis research.  相似文献   

13.
Previous studies have shown that CCL2/CX3CR1 deficient mice on C57BL/6N background (with rd8 mutation) have an early onset (6 weeks) of spontaneous retinal degeneration. In this study, we generated CCL2−/−CX3CR1GFP/GFP mice on the C57BL/6J background. Retinal degeneration was not detected in CCL2−/−CX3CR1GFP/GFP mice younger than 6 months. Patches of whitish/yellowish fundus lesions were observed in 17∼60% of 12-month, and 30∼100% of 18-month CCL2−/−CX3CR1GFP/GFP mice. Fluorescein angiography revealed no choroidal neovascularisation in these mice. Patches of retinal pigment epithelium (RPE) and photoreceptor damage were detected in 30% and 50% of 12- and 18-month CCL2−/−CX3CR1GFP/GFP mice respectively, but not in wild-type mice. All CCL2−/−CX3CR1GFP/GFP mice exposed to extra-light (∼800lux, 6 h/day, 6 months) developed patches of retinal atrophy, and only 20–25% of WT mice which underwent the same light treatment developed atrophic lesions. In addition, synaptophysin expression was detected in the outer nucler layer (ONL) of area related to photoreceptor loss in CCL2−/−CX3CR1GFP/GFP mice. Markedly increased rhodopsin but reduced cone arrestin expression was observed in retinal outer layers in aged CCL2−/−CX3CR1GFP/GFP mice. GABA expression was reduced in the inner retina of aged CCL2−/−CX3CR1GFP/GFP mice. Significantly increased Müller glial and microglial activation was observed in CCL2−/−CX3CR1GFP/GFP mice compared to age-matched WT mice. Macrophages from CCL2−/−CX3CR1GFP/GFP mice were less phagocytic, but expressed higher levels of iNOS, IL-1β, IL-12 and TNF-α under hypoxia conditions. Our results suggest that the deletions of CCL2 and CX3CR1 predispose mice to age- and light-mediated retinal damage. The CCL2/CX3CR1 deficient mouse may thus serve as a model for age-related atrophic degeneration of the RPE, including the dry type of macular degeneration, geographic atrophy.  相似文献   

14.
We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB104. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function.  相似文献   

15.
16.
The C terminus of G protein-coupled receptors (GPCRs) is important for G protein-coupling and activation; in addition, sorting motifs have been identified in the C termini of several GPCRs that facilitate correct trafficking from the endoplasmic reticulum to the plasma membrane. The C terminus of the GPCR TGR5 lacks any known sorting motif such that other factors must determine its trafficking. Here, we investigate deletion and substitution variants of the membrane-proximal C terminus of TGR5 with respect to plasma membrane localization and function using immunofluorescence staining, flow cytometry, and luciferase assays. Peptides of the membrane-proximal C-terminal variants are subjected to molecular dynamics simulations and analyzed with respect to their secondary structure. Our results reveal that TGR5 plasma membrane localization and responsiveness to extracellular ligands is fostered by a long (≥ 9 residues) α-helical stretch at the C terminus, whereas the presence of β-strands or only a short α-helical stretch leads to retention in the endoplasmic reticulum and a loss of function. As a proof-of-principle, chimeras of TGR5 containing the membrane-proximal amino acids of the β2 adrenergic receptor (β2AR), the sphingosine 1-phosphate receptor-1 (S1P1), or the κ-type opioid receptor (κOR) were generated. These TGR5β2AR, TGR5S1P1, or TGR5κOR chimeras were correctly sorted to the plasma membrane. As the exchanged amino acids of the β2AR, the S1P1, or the κOR form α-helices in crystal structures but lack significant sequence identity to the respective TGR5 sequence, we conclude that the secondary structure of the TGR5 membrane-proximal C terminus is the determining factor for plasma membrane localization and responsiveness towards extracellular ligands.  相似文献   

17.
G protein-coupled receptor kinases (GRKs) specifically phosphorylate agonist-occupied G protein-coupled receptors at the inner surface of the plasma membrane (PM), leading to receptor desensitization. GRKs utilize a variety of mechanisms to bind tightly, and sometimes reversibly, to cellular membranes. Previous studies demonstrated the presence of a membrane binding domain in the C terminus of GRK5. Here we define a mechanism by which this short C-terminal stretch of amino acids of GRK5 mediates PM localization. Secondary structure predictions suggest that a region contained within amino acids 546-565 of GRK5 forms an amphipathic helix, with the key features of the predicted helix being a hydrophobic patch of amino acids on one face of the helix, hydrophilic amino acids on the opposite face, and a number of basic amino acids surrounding the hydrophobic patch. We show that amino acids 546-565 of GRK5 are sufficient to target the cytoplasmic green fluorescent protein (GFP) to the PM, and the hydrophobic amino acids are necessary for PM targeting of GFP-546-565. Moreover, full-length GRK5-GFP is localized to the PM, but mutation of the hydrophobic patch or the surrounding basic amino acids prevents PM localization of GRK5-GFP. Last, we show that mutation of the hydrophobic residues severely diminishes phospholipid-dependent autophosphorylation of GRK5 and phosphorylation of membrane-bound rhodopsin by GRK5. The findings in this report thus suggest the presence of a membrane binding motif in GRK5 and define the importance of a group of hydrophobic amino acids within this motif in mediating its PM localization.  相似文献   

18.
Pro-endothelial monocyte-activating polypeptide II (EMAP II), one component of the multi-aminoacyl tRNA synthetase complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development, and tumor growth. Recent studies have determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of the C terminus of pro-EMAP II has been reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that the N terminus of pro-EMAP II has an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine zipper in the N terminus of human pro-EMAP II protein (amino acid residues 1–70) that can form specific strip-like punctate structures. Through GFP punctum analysis, we uncovered that the pro-EMAP II C terminus (amino acids 147–312) can repress GFP punctum formation. Pulldown assays confirmed that the binding between the pro-EMAP II N terminus and its C terminus is mediated by a putative leucine zipper. Furthermore, the pro-EMAP II 1–70 amino acid region was identified as the binding partner of arginyl-tRNA synthetase, a polypeptide of the multi-aminoacyl tRNA synthetase complex. We also determined that the punctate GFP pro-EMAP II 1–70 amino acid aggregate colocalizes and binds to the neurofilament light subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of pro-EMAP II protein and suggest a role of this protein in pathological neurodegenerative diseases.  相似文献   

19.
20.
Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQβ1Leu26 (p valueMeta = 1.24 × 10−14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQβ1Pro55 (p valueMeta = 8.23 × 10−11) located in the peptide binding region was positively associated, independently of HLA-DQβ1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB103:01, and HLA-DRB101:01. Additionally, HCV persistence classical alleles tagged by HLA-DQβ1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10−38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQβ1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号