首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to utilize methane as their sole source of carbon and energy. Early studies suggested that growth on methane could be stimulated with the addition of some small organic acids, but initial efforts to find facultative methanotrophs, i.e., methanotrophs able to utilize compounds with carbon-carbon bonds as sole growth substrates were inconclusive. Recently, however, facultative methanotrophs in the genera Methylocella, Methylocapsa, and Methylocystis have been reported that can grow on acetate, as well as on larger organic acids or ethanol for some species. All identified facultative methanotrophs group within the Alphaproteobacteria and utilize the serine cycle for carbon assimilation from formaldehyde. It is possible that facultative methanotrophs are able to convert acetate into intermediates of the serine cycle (e.g. malate and glyoxylate), because a variety of acetate assimilation pathways convert acetate into these compounds (e.g. the glyoxylate shunt of the tricarboxylic acid cycle, the ethylmalonyl-CoA pathway, the citramalate cycle, and the methylaspartate cycle). In this review, we summarize the history of facultative methanotrophy, describe scenarios for the basis of facultative methanotrophy, and pose several topics for future research in this area.  相似文献   

2.
Sixty-two mutants of the filamentous fungus Neurospora crassa were isolated on the basis of resistance to the antimetabolite fluoroacetate. Of these, 14 were unable to use acetate as sole carbon source (acetate non-utilizers, acu) and were the subject of further genetic and biochemical analysis. These mutants fell into four complementation groups, three of which did not complement any known acu mutants. Mutants of complementation group 3 failed to complement acu-8, demonstrated similar phenotypic properties and proved to be closely linked (less than 2% recombination) but not allelic. Representatives of groups 2 and 4 were mapped to independent loci; the single representative of group 1 could not be mapped. The four complementation groups were therefore designated as genes acu-10 to acu-13 respectively. All the mutants demonstrated normal acetate-induced expression of acetyl-CoA synthetase and the unique enzymes of the glyoxylate cycle and gluconeogenesis. The nature of these mutations is therefore quite different to those reported for other fungal species. Mutant acu-11 was unable to fix labelled acetate, indicating the loss of an initial transport function; partial enzyme lesions were observed for acu-12 (acetyl-CoA hydrolase) and acu-13 (acetate-inducible NAD(+)-specific malate dehydrogenase).  相似文献   

3.
The molecular mechanisms of cellular long-chain fatty acid assimilation and its regulation remain unclear. In an attempt to identify essential mediators of these processes, we have isolated mutant strains of the yeast Saccharomyces cerevisiae unable to utilize oleic acid as sole carbon source, while retaining the ability to utilize acetate. These strains are then subjected to several secondary screening assays to identify mutants of interest. Here we describe a mutant (denoted fat21) that, despite a temperature-sensitive inability to utilize oleic acid as sole carbon source, displays no general defect in oleic acid uptake or incorporation of oleic acid into glycerolipids. Oxidation of acetate after growth in acetate medium is increased similarly in the mutant and parent strains. Oleic acid beta-oxidation in acetate grown cells is also comparable between strains. Induction of oleic acid oxidation following exposure to oleic acid is, however, defective in the fat21 mutant. The fat21 mutant allele displays conditional synthetic lethality in combination with a null allele of the OLE1 gene, which encodes Delta9-desaturase and is required for proper mitochondrial segregation. Clones capable of complementing the fat21 defect contained the RML2 gene, encoding a yeast mitochondria ribosomal protein. Segregation analysis and gene replacement experiments demonstrate that RML2 is the gene defective in the fat21 mutant. These observations of a defect in a mitochondrial protein differentially affecting the adaptation to oleic acid and acetate as carbon sources suggest that the phenotype of fat21 is associated with a novel pathway of mitochondrial-nuclear-peroxisomal communication.  相似文献   

4.
L-Homocysteic acid is toxic to Escherichia coli K12. Sensitivity to this compound is higher in cells which can utilize glutamate as sole carbon source via the Na+-dependent glutamate transport system. Such cells become resistant by mutation at the gltS locus. Sensitivity of both wild-type and glutamate-utilizing strains is greater if cells are growing on acetate as compared with glucose as major carbon source.  相似文献   

5.
Mutants in Aspergillus niger unable to grow on acetate as a sole carbon source were previously isolated by resistance to 1.2% propionate medium containing 0.1% glucose. AcuA mutants lacked acetyl-CoA synthetase (ACS) activity and acuB mutants lacked both ACS and isocitrate lyase activity. An acuA mutant was transformed to the acu+ phenotype with a clone of ACS (facA) from Aspergillus nidulans. The acuB mutant was transformed with the A. niger facB clone which has been identified by cross-hybridisation of an A. nidulans facB clone. These results confirm that acuA in A. niger is the gene for ACS and acuB is analogous to the A. nidulans facB regulatory gene.  相似文献   

6.
Nutritional requirements of Acanthamoeba polyphaga (strain PD) were compared to those reported for A. castellanii. Although A. polyphaga and A. castellanii have essentially the same minimal amino acid requirements--arginine, methionine, leucine, isoleucine, and valine--A. polyphaga cannot utilize acetate as sole carbon source, but A. castellanii can if the medium is supplemented with glycine.  相似文献   

7.
Mycobacterium fortuitum subspecies acetamidolyticum is a new subspecies of M. fortuitum and has an intermediate growth rate. It is a nonphotochromogenic mycobacterium. It does not utilize glutamate but utilizes acetamide as a simultaneous nitrogen and carbon source. It is able to utilize acetate, malate, pyruvate, fumarate, glucose, fructose, and n-propanol as the sole sources of carbon in the presence of ammoniacal nitrogen, but does not utilize them in the presence of glutamate-nitrogen. It is easily differentiated from all rapidly growing mycobacteria by its inability to utilize glutamate as a simultaneous nitrogen and carbon source, and from all slowly growing mycobacteria by its capacity to utilize acetamide as a simultaneous nitrogen and carbon source. Its mycolic acid pattern is different from that of M. fortuitum. However, its deoxyribonucleic acid showed 94% relatedness with that of M. fortuitum. In view of the above findings, it has been designated as a new subspecies of M. fortuitum. The organism was isolated from sputum of a 56-year-old patient with lung disease and is considered to be a lung pathogen. The type strain is ATCC 35931 (NCH E11620).  相似文献   

8.
Two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2, were isolated from soil and river water by their abilities to utilize 2,4-dinitrophenol (0.5 mM) as the sole source of nitrogen. Although succinate was supplied as a carbon and energy source during selection, both isolates could utilize 2,4-dinitrophenol also as the sole source of carbon. Both strains metabolized 2,4-dinitrophenol under concomitant liberation of stoichiometric amounts of nitrite and 4,6-dinitrohexanoate as a minor dead-end metabolite.  相似文献   

9.
Two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2, were isolated from soil and river water by their abilities to utilize 2,4-dinitrophenol (0.5 mM) as the sole source of nitrogen. Although succinate was supplied as a carbon and energy source during selection, both isolates could utilize 2,4-dinitrophenol also as the sole source of carbon. Both strains metabolized 2,4-dinitrophenol under concomitant liberation of stoichiometric amounts of nitrite and 4,6-dinitrohexanoate as a minor dead-end metabolite.  相似文献   

10.
共代谢条件下光合细菌对2-氯苯酚的生物降解   总被引:1,自引:0,他引:1  
Dong YH  Hu XM  He YD  Li L 《应用生态学报》2011,22(5):1280-1286
光合细菌PSB-1D不能利用2-氯苯酚(2-CP)作为唯一的碳源和能源.选用苹果酸、丙酸钠、乙酸钠、柠檬酸钠、苯酚、葡萄糖和可溶性淀粉等7种不同碳源作为光合细菌PSB-1D降解2-CP的共代谢基质,考察了在黑暗好氧培养条件下,不同共代谢基质对PSB-1D生长及降解2-CP效果的影响.结果表明:葡萄糖能够很好地促进PSB-1D的大量繁殖,提高降解效果,缩短降解周期,为最佳共代谢基质.对葡萄糖的投加浓度进行了优化,当葡萄糖的投加浓度为3 g·L-1时,菌株PSB-1D培养168 h后的菌体生长浓度△D560为1.749,2-CP的半衰期为3.9 d,降解速率常数为0.00864 h-1.采用SDS-PAGE对微生物全细胞蛋白质进行分析发现,在共代谢过程中当菌株PSB-1D利用葡萄糖作为底物提供能源和碳源时,可诱导产生2-CP特异性降解酶.  相似文献   

11.
The levels of Krebs cycle, glyoxylate cycle, and certain other enzymes were measured in a wild-type strain and in seven groups of acetate-nonutilizing (acu) mutants of Neurospora crassa, both after growth on a medium containing sucrose and after a subsequent 6-hr incubation in a similar medium, containing acetate as the sole source of carbon. In the wild strain, incubation in acetate medium caused a rise in the levels of isocitrate lyase, malate synthase, phosphoenolpyruvate carboxykinase, acetyl-coenzyme A synthetase, nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, citrate synthase, and fumarate hydratase. Isocitrate lyase activity was absent in acu-3 mutants; acu-5 mutants lacked acetyl-coenzyme A synthetase activity; and no oxoglutarate dehydrogenase activity (or only low levels) could be detected in acu-2 and acu-7 mutants. In acu-6 mutants, phosphoenolpyruvate carboxykinase activity was either very low or absent. No specific biochemical deficiencies could be attributed to the acu-1 and acu-4 mutations. The role of several of these enzymes during growth on acetate is discussed.  相似文献   

12.
Enhanced biological phosphorus removal (EBPR) performance is directly affected by the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigates the effects of carbon source on PAO and GAO metabolism. Enriched PAO and GAO cultures were tested with the two most commonly found volatile fatty acids (VFAs) in wastewater systems, acetate and propionate. Four sequencing batch reactors (SBRs) were operated under similar conditions and influent compositions with either acetate or propionate as the sole carbon source. The stimulus for selection of the PAO and GAO phenotypes was provided only through variation of the phosphorus concentration in the feed. The abundance of PAOs and GAOs was quantified using fluorescence in situ hybridisation (FISH). In the acetate fed PAO and GAO reactors, "Candidatus Accumulibacter phosphatis" (a known PAO) and "Candidatus Competibacter phosphatis" (a known GAO) were present in abundance. A novel GAO, likely belonging to the group of Alphaproteobacteria, was found to dominate the propionate fed GAO reactor. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to take up acetate and propionate. PAOs enriched with acetate as the sole carbon source were immediately able to take up propionate, likely at a similar rate as acetate. However, an enrichment of GAOs with acetate as the sole carbon source took up propionate at a much slower rate (only about 5% of the rate of acetate uptake on a COD basis) during a short-term switch in carbon source. A GAO enrichment with propionate as the sole carbon source took up acetate at a rate that was less than half of the propionate uptake rate on a COD basis. These results, along with literature reports showing that PAOs fed with propionate (also dominated by Accumulibacter) can immediately switch to acetate, suggesting that PAOs are more adaptable to changes in carbon source as compared to GAOs. This study suggests that the PAO and GAO competition could be influenced in favour of PAOs through the provision of propionate in the feed or even by regularly switching the dominant VFA species in the wastewater. Further study is necessary in order to provide greater support for these hypotheses.  相似文献   

13.
Sixty mutants of Neurospora crassa unable to grow on acetate as sole source of carbon, but able to utilize sucrose, were isolated. On the basis of complementation tests, they were divided into seven groups, each group representing a different gene. Six of the genes have been mapped; no two are closely linked. These loci have been designated acu-1 to acu-7. Mutations at four of these loci result in poor germination of ascospores.  相似文献   

14.
A degradation pathway of propionate in Salmonella typhimurium LT-2   总被引:4,自引:0,他引:4  
Salmonella typhimurium LT-2 can utilize propionate as its sole carbon source. Studies on growth, oxidation by resting cell suspensions and by permeabilized cells, suggest that the propionate is transported by the acetate system. This result was confirmed using labeled propionate and acetate. ATP-monocarboxylate phosphotransferase, acyl-CoA orthophosphate acyl-transferase, propionyl-CoA dehydrogenase, acrylyl-CoA hydratase, lactate dehydrogenase, phosphoenolpyruvate (PEP) synthase and PEP-carboxylase activities have been identified in extracts of cells grown on propionate. Mutants deficient in PEP-carboxylase and synthase are unable to utilize propionate. On the basis of results obtained, it seems that the propionate degradation pathway occurs via acrylate and that PEP-synthase and PEP-carboxylase are essential enzymes.  相似文献   

15.
The presence of isocitrate lyase and malate synthase was detected in cell-free extracts ofAcetobacter aceti, grown in a mineral medium with acetate as sole carbon source. The presence of these enzymes explains the ability of this strain to grow with ethanol or acetate as sole carbon source, which is an important characteristic in Frateur's classification system forAcetobacter. In addition to isocitrate lyase and malate synthase, these cell-free extracts were found to contain glyoxylate carboligase, tartronicsemialdehyde reductase and glycerate kinase. The induction of these enzymes during growth on acetate is thought to be caused by the very high activity of isocitrate lyase, which may lead to an accumulation of glyoxylate. The importance of this pathway in cells growing with acetate as sole carbon source for the synthesis of their carbohydrate components is discussed. The presence of the enzymes from the pathway from glyoxylate to 3-phosphoglycerate explains the ability of this strain to grow with ethyleneglycol and glycollate as sole carbon source.  相似文献   

16.
17.
The naturally occurring sulfonate N-acetyltaurine was synthesized chemically and its identity was confirmed. Aerobic enrichment cultures for bacteria able to utilize N-acetyltaurine as sole source of fixed nitrogen or as sole source of carbon were successful. One representative isolate, strain NAT, which was identified as a strain of Delftia acidovorans, grew with N-acetyltaurine as carbon source and excreted stoichiometric amounts of sulfate and ammonium. Inducible enzyme activities were measured in crude extracts of this organism to elucidate the degradative pathway. Cleavage of N-acetyltaurine by a highly active amidase yielded acetate and taurine. The latter was oxidatively deaminated by taurine dehydrogenase to ammonium and sulfoacetaldehyde. This key intermediate of sulfonate catabolism was desulfonated by the known reaction of sulfoacetaldehyde acetyltransferase to sulfite and acetyl phosphate, which was further degraded to enter central metabolism. A degradative pathway including transport functions is proposed.  相似文献   

18.
The rise in global energy demand has prompted researches on developing strategies for transforming coal into a cleaner fuel. This requires isolation of microbes with the capability to degrade complex coal into simpler substrates to support methanogenesis in the coal beds. In this study, aerobic bacteria were isolated from an Indian coal bed that can solubilize and utilize coal as the sole source of carbon. The six bacterial isolates capable of growing on coal agar medium were identified on the basis of their 16S rRNA gene sequences, which clustered into two groups; Group I isolates belonged to the genus Rhizobium, whereas Group II isolates were identified as Chelatococcus species. Out of the 4 methods of whole genome fingerprinting (ERIC-PCR, REP-PCR, BOX-PCR, and RAPD), REPPCR showed maximum differentiation among strains within each group. Only Chelatococcus strains showed the ability to solubilize and utilize coal as the sole source of carbon. On the basis of 16S rRNA gene sequence and the ability to utilize different carbon sources, the Chelatococcus strains showed maximum similarity to C. daeguensis. This is the first report showing occurrence of Rhizobium and Chelatococcus strains in an Indian coal bed, and the ability of Chelatococcus isolates to solubilize and utilize coal as a sole source of carbon for their growth.  相似文献   

19.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

20.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号