首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reliability of visual examination of defleshed bones was assessed for detection of postcranial metastatic disease in individuals known to have had cancer. This was compared with standard clinical radiologic techniques. The skeletons of 128 diagnosed cancer patients from an early 20th century autopsied skeletal collection (Hamann-Todd Collection) were examined. Radiologic examination detected evidence of metastatic disease in 33 individuals, compared to 11 by visual examination of the postcranial skeletons. Four of these cases were detected by both techniques. Blastic lesions were most commonly overlooked on visual examination, because they were localized to trabecular (internal bone) structures. The ilium was the most commonly affected bone, with lytic or blastic lesions detected in 30 of 33 individuals. While the proximal femur was affected in only nine individuals, x-ray of the proximal femur and ilium detected all individuals with postcranial evidence of metastatic disease. Skeletal distribution of metastases provides no clue to the location of origin or histologic subtype of the cancer. Survey of archeological human remains for metastatic cancer requires radiologic examination. Such skeletal surveys should x-ray at least the ilia and femora. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Metastasis requires numerous biological functions that jointly provide tumor cells from a primary site to seed and colonize a distant organ. Some of these activities are selected for in the primary site, whereas others are acquired at the metastatic niche. We provide molecular evidence showing that the BMP inhibitor, NOG, provides metastatic breast cancer cells with the ability to colonize the bone. NOG expression is acquired during the late events of metastasis, once cells have departed from the primary site, because it is not enriched in primary tumors with high risk of bone relapse. On the contrary, breast cancer bone metastatic lesions do select for high levels of NOG expression when compared with metastasis to the lung, liver, and brain. Pivotal to the bone colonization functions is the contribution of NOG to metastatic autonomous and nonautonomous cell functions. Using genetic approaches, we show that when NOG is expressed in human breast cancer cells, it facilitates bone colonization by fostering osteoclast differentiation and bone degradation and also contributes to metastatic lesions reinitiation. These findings reveal how aggressive cancer cell autonomous and nonautonomous functions can be mechanistically coupled to greater bone metastatic potential.  相似文献   

3.
4.
Patients who undergo surgical extirpation of a primary liver carcinoma followed by radiotherapy and chemotherapy leading to complete remission are nevertheless known to develop cancerous metastases 3–10 years later. We retrospectively examined the blood sera collected over 8 years from 30 patients who developed bone metastases after the complete remission of liver cancer to identify serum proteins showing differential expression compared to patients without remission. We detected a novel RGD (Arg-Gly-Asp)-containing peptide derived from the C-terminal portion of fibrinogen in the sera of metastatic patients that appeared to control the EMT (epithelial-mesenchymal transition) of cancer cells, in a process associated with miR-199a-3p. The RGD peptide enhanced new blood vessel growth and increased vascular endothelial growth factor levels when introduced into fertilized chicken eggs. The purpose of this study was to enable early detection of metastatic cancer cells using the novel RGD peptide as a biomarker, and thereby develop new drugs for the treatment of metastatic cancer.  相似文献   

5.
Bone is the most common site of metastases from prostate cancer. The mechanism by which prostate cancer cells metastasize to bone is not fully understood, but interactions between prostate cancer cells and bone cells are thought to initiate the colonization of metastatic cells at that site. Here, we show that cadherin-11 (also known as osteoblast-cadherin) was highly expressed in prostate cancer cell line derived from bone metastases and had strong homophilic binding to recombinant cadherin-11 in vitro. Down-regulation of cadherin-11 in bone metastasis-derived PC3 cells with cadherin-11-specific short hairpin RNA (PC3-shCad-11) significantly decreased the adhesion of those cells to cadherin-11 in vitro. In a mouse model of metastasis, intracardiac injection of PC3 cells led to metastasis of those cells to bone. However, the incidence of PC3 metastasis to bone in this model was reduced greatly when the expression of cadherin-11 by those cells was silenced. The clinical relevance of cadherin-11 in prostate cancer metastases was further studied by examining the expression of cadherin-11 in human prostate cancer specimens. Cadherin-11 was not expressed by normal prostate epithelial cells but was detected in prostate cancer, with its expression increasing from primary to metastatic disease in lymph nodes and especially bone. Cadherin-11 expression was not detected in metastatic lesions that occur in other organs. Collectively, these findings suggest that cadherin-11 is involved in the metastasis of prostate cancer cells to bone.  相似文献   

6.
Osteosarcoma (OS) is the most common primary bone tumour in the paediatric age group. Treatment-refractory pulmonary metastasis continues to be the major complication of OS, reducing the 5-year survival rate for these patients to 10-20%. The mechanisms underlying the metastatic process in OS are still unclear, but undoubtedly, a greater understanding of the factors and interactions involved in its regulation will open new and much needed opportunities for therapeutic intervention. Recent published data have identified a new role for bone-specific macrophages (osteoclasts) and tumour-associated macrophages (TAMs), in OS metastasis. In this review we discuss the contribution of TAMs and osteoclasts in the establishment and maintenance of secondary metastatic lesions, and their novel role in the prevention of metastatic disease in a primary bone cancer such as osteosarcoma.  相似文献   

7.
Bone is a very common metastatic site for breast cancer. In bone metastasis, there is a vicious circle wherein bone-residing metastatic cells stimulate osteoclast-mediated bone resorption, and bone-derived growth factors released from resorbed bone promote tumor growth. The contribution of tumor angiogenesis in the growth of bone metastases is, however, unknown. By using an experimental model of bone metastasis caused by MDA-MB-231/B02 breast cancer cells that quite closely mimics the conditions likely to occur in naturally arising metastatic human breast cancers, we demonstrate here that when MDA-MB-231/B02 cells were engineered to produce at the bone metastatic site an angiogenesis inhibitor, angiostatin, there was a marked inhibition in the extent of skeletal lesions. Inhibition of skeletal lesions came with a pronounced reduction in tumor burden in bone. However, although angiostatin produced by MDA-MB-231/B02 cells was effective at inhibiting in vitro endothelial cell proliferation and in vivo angiogenesis in a Matrigel implant model, we have shown that it inhibited cancer-induced bone destruction through a direct inhibition of osteoclast activity and generation. Overall, these results indicate that, besides its well known anti-angiogenic activity, angiostatin must also be considered as a very effective inhibitor of bone resorption, broadening its potential clinical use in cancer therapy.  相似文献   

8.
We investigated the utility of CWR22 human prostate cancer cells for modeling human metastatic prostate cancer, specifically their ability to induce bone formation following intra-tibial injections in the nude rat. Prostate cancer is unique in regard to its tropism for bone and ability to induce new bone formation. In contrast to humans, other mammalian species rarely develop prostatic cancer spontaneously upon aging and do not have the propensity for bone metastasis that is the hallmark of cancer malignancy in men. We chose human prostate cancer cell line CWR22 based on its properties, which closely resemble all of the features that characterize the early stages of prostatic cancer in human patients including slow growth rate, hormone dependence/independence and secretion of prostate-specific antigen. When CWR22 cells were injected directly into the proximal tibia of immunodeficient male rats, both osteoblastic and osteolytic features became evident after 4 to 6 weeks, with elevated levels of serum prostate-specific antigen. However, osteosclerosis dominates the skeletal response to tumor burden. Radiological and histological evidence revealed osteosclerotic lesions with trabeculae of newly formed bone lined by active osteoblasts and surrounded by tumor cells. Toward the end of the 7-week study, osteolytic bone lesions become more evident on X-rays. Paraffin and immunohistochemical evaluations revealed mature bone matrix resorption as evidenced by the presence of many tartrate resistant acid phosphatase positive multinucleated osteoclasts. We conclude that the CWR22 human prostate cell line used in an intra-tibial nude rat model provides a useful system to study mechanisms involved in osteoblastic and osteolytic bony metastases. This type of in vivo model that closely mimics all major features of metastatic disease in humans may provide a critical tool for drug development efforts focused on developing integrated systemic therapy targeting the tumor in its specific primary or/and metastatic microenvironments. In addition to targeting bone marrow stroma, this strategy will help to overcome classical drug resistance seen at the sites of prostate cancer metastasis to bones.  相似文献   

9.
Summary Levels of secretory component (SC) were measured in breast tumors from 95 patients with primary or metastatic cancer. Tumor cytosols were prepared by polytron disruption and high speed centrifugation (105,000 g×30 min) and SC was measured using a sensitive radioimmunoassay which detects primarily free SC. In frozen samples stored for up to 5 months SC resisted degradation and could be measured quantitatively without interference. In primary tumors from patients between ages 28 and 97, SC positive samples ranged from 4 ng/mg protein to 600 ng/mg protein. In metastatic lesions, SC positive samples ranged no higher than 46 ng/mg protein. The studies indicate that SC can be measured quantitatively in both primary and metastatic tumors and that prolonged storage does not interfere with measurements of SC. The wide variation in SC levels in primary tumor samples may be related to a susceptibility to metastasis. Further, the low levels of SC in metastatic lesions could indicate a potential for SC involvement in immune regulation of tumor growth.This work supported by research grant AI-13541 from NIH and CA-23108 from the NCI  相似文献   

10.
Bone scintigraphies are widely applied for detecting bone metastases. The aim of this study was to investigate distribution features of bone metastases in pulmonary and prostate cancers. Bone scintigraphies were performed in 460 patients with pulmonary cancer and 144 patients with prostate cancer. Patients were divided into three groups according to the total number of bone metastases: few bone metastases, moderate bone metastases, and extensive bone metastases. We compared the distribution of bone metastases in the two cancers, and analyzed the relationship between the distribution of metastatic lesions and their metastatic patterns. A total of 2279 and 2000 lesions of bone metastases were detected in 258 patients with pulmonary cancer and 102 patients with prostate cancer, respectively. In patients with few bone metastases, the distributions of metastatic lesions in the vertebrae (χ2 = 16.0, P = 0.000) and thoracic bones (χ2 = 20.7, P = 0.002) were significantly different between pulmonary and prostate cancers. In cases with moderate bone metastases, the distributions in the vertebrae (χ2 = 6.6, P = 0.010), pelvis (χ2 = 15.1 P = 0.000), and thoracic bones (χ2 = 38.8, P = 0.000) were also significantly different between the two cancers. However, in patients with extensive bone metastases, the distributions were very similar. As the total number of bone metastases increased, their distribution in pulmonary cancer did not noticeably change, but the distribution in the vertebrae and thoracic bones of prostate cancer patients significantly changed. Accordingly, the distribution characteristics of bone metastases differed in pulmonary and prostate cancers, mainly in the early stages of metastasis.  相似文献   

11.
One of the great challenges of cancer medicine is to develop effective treatments for bone metastatic cancer. Most patients with advanced solid tumors will develop bone metastasis and will suffer from skeletal related events associated with this disease. Although some therapies are available to manage symptoms derived from bone metastases, an effective treatment has not been developed yet.The mammalian target of rapamycin (mTOR) pathway regulates cell growth and survival. Alterations in mTOR signaling have been associated with pathological malignancies, including bone metastatic cancer. Inhibition of mTOR signaling might therefore be a promising alternative for bone metastatic cancer management. This review summarizes the current knowledge on mTOR pathway signaling in bone tissue and provides an overview on the known effects of mTOR inhibition in bone cancer, both in in vitro and in vivo models.  相似文献   

12.
Metastasis is the major cause of death in cancer patients, and a frequent site of metastasis for many cancers is the bone marrow. Therefore, understanding the mechanisms underlying the metastatic process is necessary for future prevention and treatment. The tumor microenvironment is now known to play a role in the metastatic cascade, both at the primary tumor and in metastatic sites, and includes both cellular and non-cellular components. The extracellular matrix (ECM) provides structural support and signaling cues to cells. One particular group of molecules associated with the ECM, known as matricellular proteins, modulate multiple aspects of tumor biology, including growth, migration, invasion, angiogenesis and metastasis. These proteins are also important for normal function in the bone by regulating bone formation and bone resorption. Recent studies have described a link between some of these proteins and metastasis of various tumors to the bone. The aim of this review is to summarize what is currently known about matricellular protein influence on bone metastasis. Particular attention to the contribution of both tumor cells and non-malignant cells in the bone has been given.  相似文献   

13.
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.  相似文献   

14.

Background

Despite being the most common pelvic gynecologic malignancy in industrialized countries, no targeted therapies are available for patients with metastatic endometrial carcinoma. In order to improve treatment, underlying molecular characteristics of primary and metastatic disease must be explored.

Methodology/Principal Findings

We utilized the mass spectrometric-based mutation detection technology OncoMap to define the types and frequency of point somatic mutations in endometrial cancer. 67 primary tumors, 15 metastases corresponding to 7 of the included primary tumors and 11 endometrial cancer cell lines were screened for point mutations in 28 known oncogenes. We found that 27 (40.3%) of 67 primary tumors harbored one or more mutations with no increase in metastatic lesions. FGFR2, KRAS and PIK3CA were consistently the most frequently mutated genes in primary tumors, metastatic lesions and cell lines.

Conclusions/Significance

Our results emphasize the potential for targeting FGFR2, KRAS and PIK3CA mutations in endometrial cancer for development of novel therapeutic strategies.  相似文献   

15.
Three mammalian isoforms of transforming growth factor-beta (TGFbeta) are known, TGFbeta1, 2, and 3, that have non-overlapping functions during development. However, their specific roles in cancers such as prostate cancer are less clear. Here we show that primary cultures of prostatic epithelial cells preferentially produce and activate the latent TGFbeta2 isoform. Paired cultures of normal and malignant prostate cells from prostate cancer patients produced predominantly the TGFbeta2 isoform, with 30- to 70-fold less TGFbeta1. By mono-Q ion exchange chromatography, three major peaks of latent TGFbeta2 activity were observed corresponding to the known small latent TGFbeta2 complex, the known large latent TGFbeta2 complex and a novel eluting peak of latent TGFbeta2. Although prostate cells are known to activate latent TGFbeta, the mechanism for activation is currently unclear. We investigated whether prostate specific antigen (PSA), a serine protease used as a clinical marker for prostate cancer, could play a role in the activation of latent TGFbeta. Unlike plasmin, a known activator of both latent TGFbeta1 and 2, PSA specifically activated the recombinant small latent form of TGFbeta2, but not TGFbeta1. Prostate epithelial cells, therefore, preferentially produce the TGFbeta2 isoform and PSA, a protease produced by the prostate, specifically targets the activation of this TGFbeta isoform. PSA-mediated activation of latent TGFbeta2 may be an important mechanism for autocrine TGFbeta regulation in the prostate and may potentially contribute to the formation of osteoblastic lesions in bone metastatic prostate cancer.  相似文献   

16.
Bone is a common metastatic site for solid cancers. Bone homeostasis is tightly regulated by intimate cross-talks between osteoblast (bone forming cells) and osteoclasts (bone resorbing cells). Once in the bone microenvironment, metastatic cells do not alter bone directly but instead perturb the physiological balance of the bone remodeling process controlled by bone cells. Tumor cells produce growth factors and cytokines stimulating either osteoclast activity leading to osteolytic lesions or osteoblast function resulting in osteoblastic metastases. Growth factors, released from the resorbed bone matrix or throughout osteoblastic bone formation, sustain tumor growth. Therefore, bone metastases are the sites of vicious cycles wherein tumor growth and bone metabolism sustain each other. Lysophosphatidic acid (LPA) promotes the growth of primary tumors and metastatic dissemination of cancer cells. We have shown that by acting on cancer cells via the contribution of blood platelets and the LPA-producing enzyme Autotaxin (ATX), LPA promotes the progression of osteolytic bone metastases in animal models. In the light of recent reports it would appear that the role of LPA in the context of bone metastases is complex involving multiple sources of lipid combined with direct and indirect effects on target cells. This review will present our current knowledge on the LPA/ATX axis involvement in osteolytic and osteoblastic skeletal metastases and will discuss the potential activity of LPA upstream and downstream metastasis seeding of cancer cells to bone as well as its implication in cancer induced bone pain. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

17.
This study was conducted to determine whether individual bony lesions are specific for recognizing multiple myeloma and thereby distinguish it from metastatic cancer and leukemia. The lytic skeletal lesions of multiple myeloma are characterized by sharply defined, spheroid lesions. They have smooth borders and effaced/erased trabeculae. Unique spheroid myeloma lesions appear to be responsible for the “punched out” appearance of affected bone. The total absence of remodeling in myeloma forms a contrast to irregular preservation of trabeculae and buttressing, isolated “fronts of” cortical bone “resorption” coalescing to confluence, and the “golf-ball surface” phenomenon observed in metastatic cancer. The uniform effacement of both cortical and trabecular bone in multiple myeloma also contrasts with some cortical preservation in metastatic cancer. Leukemic lesions are more numerous than those of myeloma, but they lack the latter's “space-occupied” appearance. The relatively small holes and “fronts of resorption” of leukemia are quite different from the “space-occupied” lesions of multiple myeloma. Uniform size is a characteristic traditionally attributed to the bone lesions of multiple myeloma. The occurrence of isolated examples of uniform size lesions in metastatic cancer and of variable size lesions in some individuals with multiple myeloma precludes unequivocal use of size in differential diagnosis. Fortunately, the newly recognized macroscopic characteristics appear to separate multiple myeloma from metastatic cancer, and also distinguish myeloma from leukemia. Am J Phys Anthropol 105:241–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Skeletal scintigraphy, using phosphates or diphosphonates labeled with technetium 99m, is a sensitive method of detecting bone abnormalities. The most important and most frequent role of bone scanning is evaluating the skeletal areas in patients who have a primary cancer, especially a malignant condition that has a tendency to spread to bone areas. The bone scan is superior to bone radiographs in diagnosing these abnormalities; 15 percent to 25 percent of patients with breast, prostate or lung cancer, who have normal roentgenograms, also have abnormal scintigrams due to metastases. The majority of bone metastases appear as hot spots on the scan and are easily recognized. The incidence of abnormal bone scans in patients with early stages (I and II) of breast cancer varies from 6 percent to 26 percent, but almost invariably those patients with scan abnormalities have a poor prognosis and should be considered for additional therapies. Progression or regression of bony lesions can be defined through scanning, and abnormal areas can be identified for biopsy. The incidence of metastases in solitary scan lesions in patients with known primary tumors varies from 20 percent to 64 percent. Bone scintigraphy shows positive uptake in 95 percent of cases with acute osteomyelitis. Stress fractures and trauma suspected in battered babies can be diagnosed by scanning before there is radiological evidence. The procedure is free from acute or long-term side effects and, except in cases of very young patients, sedation is seldom necessary.Although the test is sensitive, it is not specific and therefore it is difficult to overemphasize the importance of clinical, radiographic, biochemical and scanning correlation in each patient.  相似文献   

19.
Serous epithelial ovarian cancer (EOC) patients often succumb to aggressive metastatic disease, yet little is known about the behavior and genetics of ovarian cancer metastasis. Here, we aim to understand how omental metastases differ from primary tumors and how these differences may influence chemotherapy. We analyzed the miRNA expression profiles of primary EOC tumors and their respective omental metastases from 9 patients using miRNA Taqman qPCR arrays. We find 17 miRNAs with differential expression in omental lesions compared to primary tumors. miR-21, miR-150, and miR-146a have low expression in most primary tumors with significantly increased expression in omental lesions, with concomitant decreased expression of predicted mRNA targets based on mRNA expression. We find that miR-150 and miR-146a mediate spheroid size. Both miR-146a and miR-150 increase the number of residual surviving cells by 2–4 fold when challenged with lethal cisplatin concentrations. These observations suggest that at least two of the miRNAs, miR-146a and miR-150, up-regulated in omental lesions, stimulate survival and increase drug tolerance. Our observations suggest that cancer cells in omental tumors express key miRNAs differently than primary tumors, and that at least some of these microRNAs may be critical regulators of the emergence of drug resistant disease.  相似文献   

20.
Metastatic breast cancer induces an osteoblast inflammatory response   总被引:4,自引:0,他引:4  
Breast cancer preferentially metastasizes to the skeleton, a hospitable environment that attracts and allows breast cancer cells to thrive. Growth factors released as bone is degraded support tumor cell growth, and establish a cycle favoring continued bone degradation. While the osteoclasts are the direct effectors of bone degradation, we found that osteoblasts also contribute to bone loss. Osteoblasts are more than intermediaries between tumor cells and osteoclasts. We have presented evidence that osteoblasts contribute through loss of function induced by metastatic breast cancer cells. Metastatic breast cancer cells suppress osteoblast differentiation, alter morphology, and increase apoptosis. In this study we show that osteoblasts undergo an inflammatory stress response in the presence of human metastatic breast cancer cells. When conditioned medium from cancer cells was added to human osteoblasts, the osteoblasts were induced to express increased levels of IL-6, IL-8, and MCP-1; cytokines known to attract, differentiate, and activate osteoclasts. Similar findings were seen with murine osteoblasts and primary murine calvarial osteoblasts. Osteoblasts are co-opted into creating a microenvironment that exacerbates bone loss and are prevented from producing matrix proteins for mineralization. This is the first study implicating osteoblast produced IL-6, IL-8 (human; MIP-2 and KC mouse), and MCP-1 as key mediators in the osteoblast response to metastatic breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号