首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Net photosynthetic rates (P n) of easy (EK 16-3) and difficult-to-acclimatize (EK 11-1) sea oats genotypes were examined under the following culture conditions: (1) photoautotrophic [sugar-free medium, high photosynthetic photon flux (PPF), high vessel ventilation rates and CO2 enrichment, (PA)]; (2) modified photomixotrophic [sugar-containing medium diluted with sugar-free medium over time, high PPF, and high vessel ventilation rates (PM)]; (3) modified photomixotrophic enriched [same as PM with CO2 enrichment, (PME)]; or (4) conventional photomixotrophic [sugar-containing medium, low PPF, and low vessel ventilation rates (control)]. Regardless of genotype, plantlets cultured under PA conditions died within 2 wk, whereas under PM and PME conditions, plantlets increased their P n. After 6 wk, P n per gram dry weight was 1.7 times greater in EK 16-3 than EK 11-1 plantlets cultured under PME conditions. In vitro-produced leaves of EK 16-3 plantlets were elongated with expanded blades, whereas EK 11-1 produced short leaves without expanded blades, especially under control conditions. After in vitro culture, EK 16-3 PME plantlets exhibited the highest dry weights among treatments. EK 16-3 PME and EK 16-3 PM had similarly high survivability, shoot and root dry weights and leaf lengths ex vitro compared to EK 16-3 control and EK 11-1 PM and PME plantlets. Ex vitro growth, survivability and P n per leaf area of either genotype were not affected by CO2 enrichment under modified photomixotrophic conditions. These results suggest that growth and survivability of sea oats genotypes with different acclimatization capacities can be enhanced by optimizing culture conditions.  相似文献   

2.
Research has revealed that most chlorophyllous explants/plants in vitro have the ability to grow photoautotrophically (without sugar in the culture medium), and that the low or negative net photosynthetic rate of plants in vitro is not due to poor photosynthetic ability, but to the low CO2 concentration in the air-tight culture vessel during the photoperiod. Moreover, numerous studies have been conducted on improving the in vitro environment and investigating its effects on growth and development of cultures/plantlets on nearly 50 species since the concept of photoautotrophic micropropagation was developed more than two decades ago. These studies indicate that the photoautotrophic growth in vitro of many plant species can be significantly promoted by increasing the CO2 concentration and light intensity in the vessel, by decreasing the relative humidity in the vessel, and by using a fibrous or porous supporting material with high air porosity instead of gelling agents such as agar. This paper reviews the development and characteristics of photoautotrophic micropropagation systems and the effects of environmental conditions on the growth and development of the plantlets. The commercial applications and the perspective of photoautotrophic micropropagation systems are discussed.  相似文献   

3.
Somatic embryos were developed from in vitro-grown leaf discs of Coffea arabusta in modified Murashige and Skoog medium under 30 micromol m(-2) s(-1) photosynthetic photon flux (PPF). Cotyledonary stage embryos were selected from the 14-week-old cultures and were placed under a high (100 micromol m(-2) s(-1) PPF for 14 d. These pretreated embryos were grown photoautotrophically in three different types of culture systems: Magenta vessel; RITA-bioreactor (modified to improve air exchange); and a specially designed temporary root zone immersion bioreactor system (TRI-bioreactor) with forced ventilation. The aims of the study were to achieve large-scale embryo-to-plantlet conversion, and to optimize growth of plantlets under photoautotrophic conditions. The plantlet conversion percentage was highest (84 %) in the TRI-bioreactor and lowest in the modified RITA-bioreactor (20 %). Growth and survival of converted plantlets following 45 d of photoautotrophic culture in each of the three culture systems were studied. Fresh and dry masses of leaves and roots of plantlets developed in the TRI-bioreactor were significantly greater than those of plantlets developed in the modified RITA-bioreactor or Magenta vessel. The net photosynthetic rate, chlorophyll fluorescence and chlorophyll contents were also highest in plantlets grown in the TRI-bioreactor. Normal stomata were observed in leaves of plantlets grown in the TRI-bioreactor, whereas they could be abnormal in plantlets from the modified RITA-bioreactor. Survival of the plants after transfer from culture followed a similar pattern and was highest in the group grown in the TRI-bioreactor, followed by plants grown in the modified RITA-bioreactor and Magenta vessel. In addition, ex vitro growth of plants transferred from the TRI-bioreactor was faster than that of plants from the other culture systems.  相似文献   

4.
马锋旺  李嘉瑞 《植物学报》1989,6(4):226-229
在生根培养基中加入0.5或2.0PPm PP333, 明显地减少了苹果离体新梢的鲜重和干重、叶片鲜重和叶面积,增加了比叶重、根的鲜重和干重及根梢鲜重和干重比,并促进了根的形成。PP333对单位叶重量的叶绿素含量没有影响,而增加了单位叶面积的叶绿素含量。经PP333处理后,叶片中的淀粉含量、过氧化物酶活性、蛋白质和游离氨基酸的含量均明显高于对照,可溶性糖与对照差异不明显。  相似文献   

5.
Summary A forced ventilation system has been developed for large-scale photoautotrophic micropropagation of chlorophyllous plants. The major goal of the system is to provide a uniform supply of CO2 inside a large culture vessel (volume 3480 ml) to achieve uniform growth of the plantlets. The system has been designed such that sterile nutrient solution can be supplied throughout the culture period, which is essential for long-term culture. Sweet potato (Ipomoea batatas L. Lam., cv. ‘Beniazuma’) was used as a model plant for photoautotrophic culture with stagnant and nonstagnant nutrient solution in large vessels. Growth and net photosynthetic rates of the plantlets were compared with those of the plantlets grown in a small vessel under photoautotrophic conditions (with natural ventilation) and conventional photomixotrophic conditions. The results indicated that the large vessel with the forced ventilation system was effective for improving growth and uniformity of the plantlets and the rate of net photosynthesis. The stagnant nutrient solution condition under photoautotrophic forced ventilation treatment significantly increased the fresh mass of the plantlets; however, percent dry mass was highest in the treatment with nonstagnant nutrient solution condition. The results demonstrated that the conventional photomixotrophic culture system can cause seriously inhibited growth and development.  相似文献   

6.
A scaled-up culture vessel was designed for the large-scalephotoautotrophic micropropagation of chlorophyllous plants.The culture vessel (volume 20 l) contained a plug cell traywith 448 plantlets, and had a forced ventilation system to supplyCO2-enriched air. A nutrient-reservoir was connected to theculture vessel from which nutrient solution was circulated tothe culture vessel every 24 h. Nodal leafy cuttings of Eucalyptuscamaldulensis L. were cultured photoautotrophically in thissystem without sugar in the nutrient medium, but with an enrichedCO2concentration and a high photosynthetic photon flux. Thegrowth and the net photosynthetic rate of the in vitro grownplantlets and the survival percentage of the plantlets aftertransplanting to ex vitro conditions were compared with thoseof plantlets grown photoautotrophically under natural ventilationin conventional small culture vessels (Magenta-type vessels;volume 0.4 l). Fresh and dry masses and net photosynthetic ratewere significantly higher in plantlets grown in the scaled-upvessel compared to plantlets grown in the conventional smallvessels (control). The environmental conditions created in thisscaled-up vessel (with forced ventilation) also facilitatedacclimatizationin vitro . Importantly, after transplanting tothe ex vitro condition, plantlets grew well without any specializedexvitro acclimatization treatment. Copyright 2000 Annals of BotanyCompany CO2enrichment, Eucalyptus camaldulensis L., ex vitro, forced ventilation, natural ventilation, photoautotrophic, scaled-up vessel, survival percentage  相似文献   

7.
在生根焙养基中加入0.5或2.0ppm PP_333,明显地减少了苹果离体新梢的鲜重和干重、叶片鲜重和叶面积,增加了比叶重、根的鲜重和干重及根梢鲜重和干重比,并促进了根的形成。PP_333对单位叶重量的叶绿素含最没有影响,而增加了单位叶面积的叶绿素含量。经PP_333处理后,叶片中的淀粉含量、过氧化物酶活性、蛋白质和游离氨基酸的含量均明显离于对照,可溶性糖与对照差异不明显。  相似文献   

8.
In this study, a rooting protocol was developed for macadamia plantlets with healthy roots and enhanced growth performance, along with enhanced photosynthetic capability. In vitro-grown shoots rooted in vented vessels containing vermiculite as the supporting material exhibited 100% frequency of root induction, whereas when shoots were grown in non-vented vessels containing a solidified Murashige and Skoog (MS) medium, the frequency of root induction was less than 30%. The formation of root with callus, hyperhydricity, and leaf necrosis was observed in this photomixotrophic closed system. The modification of the vented photoautotrophic system with different concentrations of CO2 and sucrose were investigated using vermiculite as the supporter. The number of roots, root length, root surface area, fresh weight, and dry weight were significantly higher in plantlets grown in CO2-enriched (1,000 μmol CO2 mol−1) photoautotrophic conditions. The water content in both root and shoot tissues of plantlets cultured under photoautotrophic conditions was maximized. In addition, shoot and leaf performances were enhanced in plantlets cultured under CO2-enriched photoautotrophic conditions. The supplementation of sucrose (29–88 mM) to culture media in both ambient and elevated CO2 conditions affected a reduction in the shoot and root performance of in vitro plantlets. Chlorophyll a, chlorophyll b, and total carotenoids in the leaf tissues of plantlets acclimatized in CO2-enriched photoautotrophic conditions were enriched, leading to increasing photosynthetic abilities, including chlorophyll fluorescence and net photosynthetic rate. From this investigation, a root induction protocol was established and the production of healthy macadamia plantlets was successfully implemented using CO2-enriched photoautotrophic conditions.  相似文献   

9.
Summary In vitro plantlets of Phalaenopsis ‘Happy Valentine’, Neofinetia falcate Hu, Cymbidium kanran Makino, and Cymbidium goeringii Reichb. f. were grown under photoautotrophic [high photosynthetic photon flux (PPF), high CO2 concentration, and increased number of air exchanges] and heterotrophic (low PPF, low CO2 concentration, no air exchanges) culture conditions. After 40 d of culture, a significant difference in plantlet growth was observed between the two cultures. Total fresh and dry mass were on average 1.5 times greater in photoautotrophic culture than in heterotrophic culture. Higher net photosynthetic rates were also observed for Phalaenopsis in photoautotrophic culture. In photoautotrophic culture, little difference was observed in air temperature between the inside and outside of the culture vessel, whereas in heterotrophic culture, air temperature inside the culture vessel was 1–2°C higher than that outside the culture vessel. Relative humidity inside the culture vessel was remarkably different between the two cultures: 83–85% in photoautotrophic culture and 97–99% in heterotrophic culture. These results indicated that growth and net photosynthetic rate of in vitro orchid plantlets were susceptible to the culture environments such as PPF, CO2 concentration, relative humidity (RH), and the number of air exchanges, which would allow a more efficient micropropagation system for these orchid plants.  相似文献   

10.
Leafy or chlorophyllous explants of a number of plant species currently micropropagated have been found to have high photosynthetic ability. Their growth and development have been promoted on sugar-free medium rather than on sugar-containing medium, provided that the environmental factors, such as CO2 concentration, light intensity and relative humidity, are controlled for promoting photosynthesis and transpiration of explants/shoots/plantlets in vitro. Thus, environmental control is essential for promoting photosynthetic growth and development of in vitro plantlets. Several types of sugar-free (photoautotrophic) culture systems for large-scale micropropagation of plants have been developed. Advantages of sugar-free over conventional (heterotrophic or photomixotrophic) micropropagation systems are as follows: growth and development of plantlets in vitro are faster and more uniform, plantlets in vitro have less physiological and morphological disorders, biological contamination in vitro is less, plantlets have a higher percentage of survival during acclimatization ex vitro, and larger culture vessels could be used because of less biological contamination. Hence, production costs could be reduced and plant quality could be improved significantly with photoautotrophic micropropagation. Methods for the measurement and control of in vitro environments and the beneficial effects of environmental control on photosynthetic growth, development, and morphogenesis in large-scale production of micropropagated plantlets are presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary Photoautotrophic (sugar-free) micropropagation has been examined for many different plant species. One of the advantages of photoautotrophic micropropagation is the low risk of contamination, which facilitates the use of large culture vessels, and thus contributes to the reduction in production cost. In this article, pathogenic and nonpathogenic contaminations are discussed, and guidelines for development of large-scale, pathogen-free, photautotrophic micropropagation systems are introduced. A preliminary experiment was conducted for producing pathogen-free plantlets by large-scale photoautotrophic micropropagation. Addition of AgNO3 in the medium was shown to suppress growth of nonpathogenic contaminants without reducing fresh and dry weight, and number of leaves of the tomato plantlets.  相似文献   

12.
Photoautotrophic micropropagation   总被引:4,自引:0,他引:4  
Summary Sugar in the medium is considered to be an essential cause for the high production costs of plantlets in conventional, heterotrophic micropropagation. Chlorophyllous explants, shoots, and plantlets in vitro have high photosynthetic ability to develop photoautotrophy, but their photosynthetic activity is restricted largely by the low CO2 concentration in the vessel during the photoperiod and in part by the presence of sugar in the medium. The growth of plantlets in vitro is often greater under photoautotrophic conditions than under heterotrophic conditions, provided that the in vitro environment is properly controlled for promoting photosynthesis. The advantages and disadvantages of photoautotrophic micropropagation are discussed.  相似文献   

13.
Conventional photomixotrophic micropropagation systems are inefficient due to the high rates of mortality upon the transfer of plantlets from in vitro to ex vitro conditions. Exogenous medium sugar has been suggested to be the major cause of this problem. The aim of this study was to investigate the role of sucrose supply on the metabolic profile of in vitro-grown potato plantlets subjected to different tissue culture conditions consisting of Murashige and Skoog medium and without sucrose [photoautotrophic (PAT) condition] or with 3% sucrose [photomixotrophic (PMT) condition]. Using gas chromatography–mass spectrometry, we identified a set of 51 different metabolites in leaf tissues during the rooting phase. Most growth parameters, such as shoot length, leaf fresh weight, leaf number, and leaf area/plant, were significantly lower under PMT than under PAT conditions. Moreover, photosynthesis was inhibited due to partial stomatal closure under PMT conditions. The metabolomic profiles along with principal component analysis and hierarchical cluster analysis revealed that the two treatments were characterized by distinct metabolic signatures. PAT leaves were characterized by the accumulation of urea and erythritol. In comparison, PMT leaves were characterized by the accumulation of metabolites belonging to the primary metabolism and catecholamines as well as compounds related to abiotic stress conditions, such as proline, hydroxyproline, asparagine, γ-aminobutyric acid (GABA), soluble sugars, and myo-inositol.  相似文献   

14.
Summary Shoot growth and root development of plantlets germinated from encapsulated somatic embryos of carrot were promoted by transferring the embryos from a culture medium containing sucrose (1.5%) to a culture vessel with a similar medium without sucrose, which was kept under a constant relative humidity condition (90%) during the culture period. The length and dry weight of plantlet shoots placed on medium supports (ceramic wool) containing a liquid culture medium without sucrose from three weeks after placing encapsulated somatic embryos were approximately two times greater than those placed on medium supports containing a culture medium with sucrose throughout the five-week culture period.  相似文献   

15.
Explants and seeds of Brassica campestris L. were cultured on Murashige & Skoog (1962) medium with and without sucrose in a vessel with different numbers of air changes per hour under different PPF (photosynthetic photon flux) conditions. The growth and development of plantlets in the vessel were similar to those of seedlings when cultured under the same in vitro environmental conditions. The growth and development of seedlings when cultured under the same in vitro environmental conditions. The growth and development of plantlets/seedlings were greater for treatments with a higher number of air changes per hour and a higher PPF regardless of the sucrose concentration in the culture medium.The CO2 concentration in the vessel with a lower number of air changes per hour decreased to approximately 100 ppm during the photoperiod on day 21 due to the photosynthetic activities of the plantlets/seedlings. The low CO2 concentration, in turn, reduced the net photosynthetic rate of plantlets/seedlings in the vessel, and thus affected their growth and development.Abbreviations Cin CO2 concentration in the culture vessel - Cout CO2 concentration in the culture room - MS mineral composition of Murashige & Skoog (1962) medium - PPF photosynthetic photon flux  相似文献   

16.
Nodal explants of rice cultivar Pathumthani 1 (PT1; short-day photoperiod insensitive) were collected, surface-disinfected, and cultured on modified MS medium under in vitro conditions for 90 d. A total of 60% nodal explants generated flowering plantlets (with one inflorescence per cluster). The net photosynthetic rate was greater, and soluble sugars (including glucose, fructose, and sucrose) accumulated to higher levels in the leaves of flowering as compared to non-flowering plants. In contrast, chlorophyll a, chlorophyll b, total chlorophyll, and total carotenoid content were enriched to a greater degree in the leaves of non-flowering as compared to flowering plants. Also, growth performance parameters, including plant height, number of leaves per plant, leaf area, fresh weight, and dry weight of plantlets derived from seedlings were superior to those of plantlets derived from nodal explants. In addition, the protocol proved to successfully induce flowering in KDML 105, a short-day photoperiod-sensitive rice cultivar.  相似文献   

17.
Effects of two ventilation methods (forced and natural) and two photosynthetic photon fluxes (PPF, 150 and 250 μmol m−2 s−1) on the photoautotrophic growth of in vitro cultured coffee (Coffea arabusta) plantlets were investigated. Number of air exchanges was 2.7, 5.9 and 3.9 h−1 for forced low rate, forced high rate and natural ventilation, respectively. Single node cuttings of in vitro cultured coffee plantlets were cultured on Florialite, a mixture of vermiculite and cellulose fibers with high air porosity, emerged in liquid half strength basal MS medium, without sucrose, vitamins and plant growth regulators. The study included 40 days in the in vitro stage and 10 days in the ex vitro stage. Mean fresh and dry weights, leaf area, shoot and root lengths and net photosynthetic rate per plantlet were significantly greater in forced high rate treatments compared with those in natural and forced low rate treatments. PPF had a distinct effect on shoot length suppression and root elongation of coffee plantlets in forced high rate treatments. The control of carbon dioxide concentration inside the culture box according to the plant demand when growing was easy with the forced ventilation method in photoautotrophic micropropagation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
In vitro directly micropropagated plantlets from three selected five-year-old Eucalyptus grandis Hill ex. Maiden hybrids were compared to their related half-sib seedlings for growth and growth pattern parameters under greenhouse conditions used for operational seedling production. The oven dry weights were determined from stem, leaf, and root samples collected every 40 days for four times. Relative growth rate, net assimilation rates and shoot:root ratio were calculated. Survival was 98% and 95% for plantlets and seedlings, respectively. Significant differences were observed between parents in terms of shoot and root dry weights and their ratios with similar ranking among plantlets and seedlings, suggesting genetic control over these traits. Plantlets started with significantly higher root: shoot ratios and stem, leaf, root, and total dry weight. Although seedlings had higher relative growth and net assimilation rates, all the initial differences decreased sharply over time.  相似文献   

19.
Summary Nodal cuttings of Eucalyptus camaldulensis L. plantlets were cultured photoautotrophically (sugar-free nutrient medium and with enriched CO2 and high photosynthetic photon flux) in a scaled-up vessel (volume 4.0 liters) under forced ventilation (SV-treatment). After 28 d of culture, physiological aspects of the plantlets were compared with plantlets grown photomixotrophically (20 g l−1 sucrose in the medium) in a Magenta vessel (volume 0.4 liters) under natural ventilation (control). In the SV-treatment net photosynthetic rates were enhanced, normal stomatal closing and opening were observed, and the epicuticular leaf-wax content was significantly higher than the control. The anatomical study showed well-organized palisade and spongy mesophyll layers of SV leaves. The SV-treatment also allowed in vitro acclimatization, and after transplanting ex vitro, the transpiration rate and the percent water loss was lower than those of the control and thus the SV plantlets acclimatized easily ex vitro.  相似文献   

20.
Rehmannia glutinosa plantlets were cultured for 4 weeks under different culture conditions to determine the optimum environment for in vitro growth and ex vitro survival. Plantlet growth increased with an increasing number of air exchanges of the culture vessel, exhibiting greatest shoot weight, total fresh weight, leaf area, and chlorophyll content at 4.4 h−1 of air exchanges. High sucrose concentration (30 g l−1) increased root weight but reduced shoot growth. Net photosynthetic rates of the plantlets were greatest when sucrose was not added to the medium. On the other hand, ex vitro survival of the plantlets was not influenced by sucrose concentration. In the experiment on difference in photoperiod and dark period temperatures (DIF) and photosynthetic photon flux (PPF), plantlet growth increased as DIF and PPF levels increased. Particularly, increasing PPF level had a more distinctive effect on plantlet growth than increasing DIF level. The interaction of DIF × PPF was also significant, showing the greatest plantlet growth in positive DIF (+8 DIF) and a high PPF (210 μmol m−2 s−1). In conclusion, the results of this experiment suggest that increased number of air exchanges of the culture vessel, decreased sucrose concentration, and positive DIF in combination with high PPF level enhanced growth and acclimatization of Rehmannia glutinosa plantlets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号