首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
3.
Candida glycerinogenes WL2002-5 has a modest sugar tolerance and an extremely high glycerol productivity. Agrobacterium tumefaciens can transfer part of its Ti plasmid, the T-DNA, into the nuclear genome of a wide variety of host cells. In this study, we constructed the plasmid pZR and transferred it into A. tumefaciens LBA4404 to form the strain LBA4404-ZR. LBA4404-ZR was cocultivated with C. glycerologenesis, and putative transformants were identified by selection for zeocin resistance. Polymerase chain reaction and Southern blot analysis confirmed that the gene zeocin was integrated into the genome of engineered C. glycerologenesis. Optimization of the transformation condition was performed in darkness at 25 degrees C on induction medium for 24 h by cocultivation of C. glycerinogenes and LBA4404-ZR with a cell ratio of 1:500-1000. The transformation efficiency reached 2 transformants per 10(4) C. glycerologenesis cells. Our results demonstrated that A. tumefaciens-mediated transformation can be used for C. glycerinogenes. This transformation system can provide the basis for research of C. glycerologenesis in the future.  相似文献   

4.
Agrobacterium tumefaciens-mediated transformation system was established for Hybanthus enneaspermus using leaf explants with the strain LBA4404 harbouring pCAMBIA 2301 carrying the nptII and gusA genes. Sensitivity of leaf explants to kanamycin was standardized (100 mg/l) for screening the transgenic plants. Transformation parameters (OD, virulence inducer, infection time, co-cultivation period, bactericidal antibiotics, etc.) influencing the gene transfer and integration were assessed in the present investigation. Fourteen-day pre-cultured explants were subjected with Agrobacterium strain LBA4404. Optimized parameters such as culture density of 0.5 OD600, infection time of 6 min, AS concentration of 150 µM with 3 days co-cultivation revealed maximum transformation efficiency based on GUS expression assay. The presence of gusA in transgenics was confirmed by polymerase chain reaction and Southern blotting analysis. The present transformation experiment yielded 20 shoots/explant with higher transformation efficiency (28 %). The protocol could be used to introduce genes for trait improvement as well as for altering metabolic pathway for secondary metabolites production.  相似文献   

5.
Shoot tip explants prepared from seedlings of ML-267 genotype of green gram were inoculated on MSB5 medium supplemented with BAP (0–20 μM) individually or in combination with minimal concentration of auxins (NAA/IAA/IBA) for adventitious shoots formation. BAP alone without auxins was observed to be efficient in multiple shoot induction and optimum shoot proliferation was achieved on MSB5 medium containing 10 μM BAP with 100?% shoot induction frequency. 3-day-old explants gave best shoot multiplication response and the mean shoot number decreased significantly in 4-day and 5-day-old explants. The induced shoots rooted profusely on ½ MSB5?+?2.46 µM IBA and about 90?% of the plantlets survived after acclimatization and set seed normally. Shoot tip explants infected with A.tumefaciens (LBA4404) harboring pCAMBIA 2301?+?AnnBj1 recombinant vector. Various factors which influence the competence of transformation were optimized based on the frequency of transient GUS expression in shoot tip explants. Optimum levels of transient GUS expression were recorded at pre-culture of explants for 2 days, infection for 10 min with Agro-culture of 0.8 OD and co-cultivation for 3 days on co-cultivation medium containing 100 µM acetosyringone in dark at 23?°C. Putative transformed shoots were produced on selection medium (shoot inductionmedium with100 mg/l kanamycin and 250 mg/l cefotaxim). PCR analysis confirmed the presence of AnnBj1, nptII, and uidA genes in T0 plants. Stable GUS activity was detected in flowers of T0 plants and leaves of T1 plants. PCR analysis of T1 progeny revealed AnnBj1 gene segregated following a Mendelian segregation pattern.  相似文献   

6.
An efficient transformation protocol was developed for Eucalyptus tereticornis Sm. using cotyledon and hypocotyl explants. Precultured cotyledon and hypocotyl explants were cocultured with Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pBI121 containing the uidA and neomycin phosphotransferase II genes for 2 d and transferred to selective regeneration medium containing 0.5 mg/l 6-benzylaminopurine (BAP), 0.1 mg/l naphthalene acetic acid, 40 mg/l kanamycin, and 300 mg/l cefotaxime. After two passages in the selective regeneration medium, the putatively transformed regenerants were transferred to Murashige and Skoog (MS) liquid medium containing 0.5 mg/l BAP and 40 mg/l kanamycin on paper bridges for further development and elongation. The elongated kanamycin-resistant shoots were subsequently rooted on the MS medium supplemented with 1.0 mg/l indole-3-butyric acid and 40 mg/l kanamycin. A strong β-glucuronidase activity was detected in the transformed plants by histochemical assay. Integration of T-DNA into the nuclear genome of transgenic plants was confirmed by polymerase chain reaction and southern hybridization. This protocol allows effective transformation and direct regeneration of E. tereticornis Sm.  相似文献   

7.
D. Xie  Y. Hong 《Plant cell reports》2002,20(10):917-922
A protocol was developed for Agrobacterium-mediated genetic transformation of Acacia mangium using rejuvenated shoots as the explant. Axillary buds and shoot apices of adult trees were rejuvenated by culturing them on Murashige and Skoog (MS) medium, and stem segments of rejuvenated shoots were co-cultured with Agrobacterium tumefaciens strain LBA4404 harbouring binary vector pBI121. The selection for transgenic shoots was performed through five consecutive steps on MS medium supplemented with 1.0 mg/l thidiazuron, 0.25 mg/l indole-3-acetic acid and different concentrations of geneticin (G418; 12–30 mg/l) and timentin (T; 50–300 mg/l) in the following order: 12 mg/l G418 and 300 mg/l T for 30 days, 20 mg/l G418 and 200 mg/l T for 60 days, 30 mg/l G418 and 100 mg/l T for 30 days, 12 mg/l G418 and 50 mg/l T for 30 days, and finally 15 mg/l G418 and 5 mg/l gibberellic acid (GA3) for 60 days. Thirty-four percent of the stem segments produced resistant multiple adventitious shoot buds, of which 30% expressed the β-glucuronidase gene. The shoot buds were subjected to repeated selection on MS medium supplemented with 2.0 mg/l 6-benzylaminopurine, 2.5 mg/l GA3 and 20 mg/l G418. Transgenic plants were obtained after rooting on half-strength MS medium supplemented with 2.0 mg/l α-naphthaleneacetic acid, 0.1 mg/l kinetin and 20 mg/l G418. Genomic Southern blot hybridization confirmed the incorporation of the NPTII gene into the host genome.  相似文献   

8.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

9.
An efficient and reproducible protocol for the production of transgenic plants was developed for Morus indica cv. K2 by Agrobacterium tumefaciens-mediated transformation. The hypocotyls, cotyledon, leaf and leaf callus explants precultured for 5 days on regeneration medium were co-cultivated with a bacterial suspension at 10(9) cells/ml for 3 days in the dark. Infectivity of A. tumefaciens strain LBA4404 was more than that of strains GV2260 and A281, and among the various plasmids tried, pBI121 and pBI101:Act1 transformed nearly 100% of the explants followed closely by p35SGUSINT. About 90-100% of the explants tested positive in the beta-glucuronidase (GUS) histochemical assay performed after 3 days of co-cultivation. This high level of transient expression, however, decreased to 20-25% after 15 days. Gus activity was most stable in the callus explants, which emerged as the explant of choice for transformation. The transformed explants were selected on 50-75 mg/l kanamycin for 1 month, and 25-50% of the explants developed adventitious buds. On the basis of kanamycin-resistant shoots produced from the total number of explants inoculated, the transformation efficiency was 44%. After 1 month, 40% of these shoots displayed high gus activity as assessed by the GUS fluorometric assay. On a selection-free root induction medium, 80% of the shoots developed roots and 90% of the potted plantlets acclimatized to the growth room conditions. The 3-month-old regenerates showed gus and nptII(neomycin phosphotransferase II) gene activity as assayed by the GUS fluorometric assay and nptII enzyme assay, followed by PCR polymerase chain reaction (54.5%) analysis after 6-months. Transgene integration into the nuclear genome of 1-year-old regenerates was confirmed in 10 of the 18 transformants tested by Southern analysis. The transformation efficiency as defined by the number of transgenic plants produced from the total number of explants co-cultivated was 6%.  相似文献   

10.
Eclipta alba (False daisy) is an important medicinal plant with well-known antihepatotoxic activity. However, no previous in vitro studies are available for its callus culture for increased production of antioxidant secondary metabolites. Herein, we maintained a competent protocol for callus culture of E. alba using stem and leaf explants grown on MS medium containing various concentrations of thidiazuron, 6-benzylaminopurine (BAP) either alone or in association with α-naphthalene acetic acid (NAA). Among all the applied plant growth regulators, BAP along with NAA resulted in maximal dry biomass of 18.0 and 13.8 g/l for stem and leaf explants, respectively. Furthermore, the highest production of phenolics (375.7 mg/l for stem-associated callus and 298 mg/l for leaf-associated callus) and flavonoids (62.0 and 52.3 mg/l for stem- and leaf-associated callus, respectively) were found to be present in optimized callus culture. Antioxidant activity was also elucidated for both stem and leaf derived calli. The highest antioxidant activities (~?93.5%) were witnessed for stem and leaf associated calli at set concentrations of 3.0 mg/l BAP?+?1.0 mg/l NAA and 4.0 mg/l BAP, respectively. High-performance liquid chromatography analyses revealed optimum accumulation of coumarin (1.98 mg/g DW) and wedelolactone (49.63 mg/g DW) in leaf associated callus and desmethylwedelolactone (69.96 mg/g DW), β-amyrin (0.8179 mg/g DW) and eclalbatin (0.3202 mg/g DW) in stem associated callus at optimized concentration.  相似文献   

11.
Safflower is an important oilseed crop with a nutritionally desirable oil composition comprising low levels of saturated fatty acids and high levels of unsaturated fatty acids. In this study, a robust, genotype-independent plant regeneration protocol was developed for geographically diverse safflower genotypes, including one accession each from America, Australia, Egypt, Germany, Kazakhstan and three important Indian genotypes (Sharda, Bhima and PBNS-12). Use of cotyledonary nodes as explants resulted in genotype-independent regeneration on BAP (6-Benzylaminopurine), NAA (Naphthalene acetic acid) and ascorbic acid supplemented MS medium. Histological analysis revealed that multiple shoot apical meristems originated independently from peripheral cortical regions of explants. We developed a highly efficient in vitro micrografting method which enabled successful rooting of 85–90 % of regenerated shoots. An efficient genetic transformation system was also established for three Indian genotypes viz., Sharda, Bhima and PBNS-12 using the Agrobacterium strain, LBA4404 and phosphinothricin as the selection agent. This is the first report on use of phosphinothricin-based selection and cotyledonary nodes as explants for Agrobacterium-mediated transformation of safflower. Use of vacuum infiltration-assisted Agrobacterium infection and inclusion of a pre-culture step significantly increased transformation frequencies in all the three genotypes as seen by GUS assays on transformed calli. Genomic integration and transgene expression were confirmed by PCR, Southern hybridization and GUS assays. Most transgenic plants (90 %) exhibited a normal phenotype when grown under controlled conditions and produced viable seeds. This protocol would be useful for introduction of desirable traits in diverse genotypes of safflower.  相似文献   

12.
An efficient and reproducible procedure is described for direct shoot regeneration in Drymaria cordata Willd. using leaf explants cultured on Murashige and Skoog (MS) medium supplemented with α-naphthalene acetic acid (NAA) and 6-benzyladenine. The regeneration frequency varied with the plant growth regulator concentrations, orientation of the explants, and the carbon source and basal salts present in the regeneration medium. The highest mean number of shoots per explant (10.65 ± 1.03) was recorded on MS plates containing 3% sucrose and 0.8% agar supplemented with 0.1 mg/l NAA and 1.0 mg/l BAP. Shoot buds were induced in the basal parts of the leaf explants. Concentrations of NAA exceeding 1 mg/l suppressed shoot regeneration. Explants bearing the entire lamina and petiole were much more responsive than those having only the lamina. The plantlets that regenerated from the leaf explants were rooted successively on MS medium alone or in combination with indole butyric acid (IBA). The highest mean number of root organogenesis, with 25.67 ± 3.68 roots per leaf segment, was obtained in the presence of 1 mg/l IBA. Histological investigations of the regenerating shoots showed that the shoot buds had emerged from epidermal cells without callus formation. More than 90% of the in vitro-propagated plants survived when transferred to a greenhouse for acclimatization. Thus, this optimized regeneration system may be used for rapid shoot proliferation and genetic transformation.  相似文献   

13.
Herbicide (Basta®)-tolerant Vigna mungo L. Hepper plants were produced using cotyledonary-node and shoot-tip explants from seedlings germinated in vitro from immature seeds. In vitro selection was performed with phosphinothricin as the selection agent. Explants were inoculated with Agrobacterium tumefaciens strain LBA4404 (harboring the binary vector pME 524 carrying the nptII, bar, and uidA genes) in the presence of acetosyringone. Shoot regeneration occurred for 6 wk on regeneration medium (MS medium with 4.44 μM benzyl adenine, 0.91 μM thidiazuron, and 81.43 μM adenine sulfate) with 2.4 mg/l PPT, explants being transferred to fresh medium every 14 d. After a period on elongation medium (MS medium with 2.89 μM gibberellic acid and 2.4 mg/l PPT), β-glucuronidase-expressing putative transformants were rooted in MS medium with 7.36 μM indolyl butyric acid and 2.4 mg/l PPT. β-Glucuronidase expression was observed in the primary transformants (T0) and in the seedlings of the T1 generation. Screening 128 GUS-expressing, cotyledonary-node-derived, acclimatized plants by spraying the herbicide Basta® at 0.1 mg/l eliminated nonherbicide-resistant plants. Southern hybridization analysis confirmed the transgenic nature of the herbicide-resistant plants. All the transformed plants were fertile, and the transgene was inherited by Mendelian genetics. Immature cotyledonary-node explants produced a higher frequency of transformed plants (7.6%) than shoot-tip explants (2.6%).  相似文献   

14.
An efficient variety-independent method for producing transgenic eggplant (Solanum melongena L.) via Agrobacterium tumefaciens-mediated genetic transformation was developed. Root explants were transformed by co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBAL2 carrying the reporter gene beta-glucuronidase intron (GUS-INT) and the marker gene neomycin phosphotransferase (NPTII). Transgenic calli were induced in media containing 0.1 mg l(-1) thidiazuron (TDZ), 3.0 mg l(-1) N(6)-benzylaminopurine, 100 mg l(-1) kanamycin and 500 mg l(-1) cefotaxime. The putative transgenic shoot buds elongated on basal selection medium and rooted efficiently on Soilrite irrigated with water containing 100 mg l(-1) kanamycin sulphate. Transgenic plants were raised in pots and seeds subsequently collected from mature fruits. Histochemical GUS assay and polymerase chain reaction analysis of field-established transgenic plants and their offsprings confirmed the presence of the GUS and NPTII genes, respectively. Integration of T-DNA into the genome of putative transgenics was further confirmed by Southern blot analysis. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both the NPTII and GUS genes.  相似文献   

15.
Immature embryo-derived calli of spring wheat (Triticum aestivum L.) cv Veery5 were transformed using Agrobacterium tumefaciens strain LBA4404 carrying either binary vector pHK22 or superbinary vector pHK21, the latter carrying an extra set of vir genes--vir B, -C and -G. In both cases, transient beta-glucuronidase ( GUS) expression ranging from 35-63% was observed 3 days after co-cultivation, but 587 calli infected with pHK22/LBA4404 failed to produce a single stably transformed plant, whereas 658 calli infected with pHK21/LBA4404 gave rise to 17 transformants carrying both the GUS and bar genes. Regeneration media supplemented with 0.1 M spermidine improved the recovery of transformants from pHK21/LBA4404-infected calli from 7% to 24.2%, resulting in an increase in the overall transformation frequency from 1.2% to 3.9%. The results suggest that two important factors that could lead to an improvement in transformation frequencies of cereals like wheat are (1) the use of superbinary vectors and (2) modification of the polyamine ratio in the regeneration medium. Stable expression and inheritance of the transgenes was confirmed by both genetic and molecular analyses. T1 progeny showed segregation of the transgenes in a typical Mendelian fashion in most of the plants. Of the transformed plants, 35% showed single-copy insertion of the transgene as shown by both Southern analysis and the segregation ratios.  相似文献   

16.
A protocol was established for callus induction and plant regeneration of Albizia julibrissin Durazz., a multipurpose tree. Calli were induced on hypocotyl explants excised from 10- to 14-d-old in vitro seedlings cultured on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) alone or in combination with 6-benzylaminopurine (BA) or 6-furfurylaminopurine (kinetin). The highest frequency of organogenic callus (82.2?±?3.6%) was obtained on MS medium with 10.8 μM NAA and 4.4 μM BA. Calli were then cultured on MS medium with BA or zeatin, singly or in combination, for shoot regeneration. Calli cultured on MS medium with 13.2 μM BA and 4.6 μM zeatin produced the highest frequency of adventitious shoot regeneration (75.3?±?6.3%). Maximum rooting of shoots (73.3?±?5%) was achieved using half-strength MS medium with 4.9 μM indole-3-butyric acid. The genetic fidelity of 12 plants acclimatized to the greenhouse was assessed based on analyses of start codon targeted (SCoT) polymorphism and inter-retrotransposon amplified polymorphism (IRAP). The 14 SCoT and 7 IRAP adapted primers produced 71 and 34 scoreable fragments, of which 33 (46%) and 12 (35%) were polymorphic, respectively. The in vitro-raised plants exhibited 0.129–0.438 genetic distance from the mother plant and 0.000–0.788 distance from one another according to the SCoT and IRAP analyses. Although the culture method described here may not be suitable for clonal propagation of elite genotypes, it can be used for conservation of this plant.  相似文献   

17.
An efficient system in vitro propagation for Notopterygium incisum Ting ex H. T. Chang, an endemic and endangered medicinal plant, was established to address increased demand and germplasm conservation goals. Optimum response in callus induction (CI) was observed on Murashige and Skoog (MS) medium supplemented with 1.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.2 mg/l 6-benzylaminopurine (BAP), which the induction rate and growth of callus were 84.44% and 0.67 g respectively. The highest shoot regeneration frequency (76.97%) and maximum number of shoots (3.6 shoots per callus) were achieved on MS medium with 1.5 mg/l BAP and 0.2 mg/l naphthalene acetic acid (NAA). Half-strength MS medium supplemented with 0.6 mg/l indole-3-butyric acid (IBA) was determined to be the best rooting medium, resulting in the maximum number of roots (18.6 roots per shoot) and the highest rooting frequency (92.28%). An approximate 83.8% survival rate among the regenerated plantlets was recorded after they were transplanted in the field at an altitude of 3200 m. An HPLC analysis showed that the content of two main chemical constituents, notopterol and isoimperatorin, in the rhizomes of 3-year-old regenerated plantlets was higher (3.84 mg/g and 4.05 mg/g, respectively) than that in commercially marketed crude drugs. This first report of complete regeneration in vitro could provide an alternative method for the rapid, large-scale production and conservation of this valuable, rare, and endangered medicinal plant.  相似文献   

18.
19.
20.
The florist’s Gloxinia, Sinningia speciosa, which bears considerable flower trait variations, is an emerging model plants to study floral traits development. However, the investigation of the genetic information linking these floral traits is limited due to a lack of a reliable and efficient transformation system for functional studies. This study aims to optimize a stable genetic transformation system for S. speciosa. Detailed regeneration process and tissue culture parameters are also elucidated. The results show that the plant regeneration, initiated from a single perivascular parenchyma cell, can be induced from leaf and petiole explants in the presence of 1 mg/mL 6-benzylaminopurine (BA) and 0.1 mg/mL naphthalene-acetic acid (NAA) through embryogenesis. In the presence of 0.1 mg/mL NAA only, the adventitious roots form prior to the re-differentiation of shoot tissues in leaf explants. When the proximal end of the petiole is orientated upright with the distal end to the medium, it results in higher success of regeneration, suggesting that hormone supplies must follow endogenous basipetal auxin polarity. Using a glucuronidase (GUS) reporter gene construct, maximum transformation (3.13%) was obtained after a 3 day pre-culture and 5 day co-culture from cotyledons and leaves of 3-week-old seedlings inoculating Agrobacterium strain EHA105. The putative transgenic lines were validated by RT-PCR, Southern blotting and GUS activity. Our result demonstrates that young seedlings are the best material for transformation, probably because young leaves are only a few cell layers thick allowing inner perivascular cell (the origin of regeneration) to be more accessible for Agrobacterium infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号