首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical mutagens, such as sodium azide, have attracted the interest of plant breeders. Azide creates DNA point mutations and affects plant growth and development, disturbs metabolic activity and inhibits protein and DNA replication, whereas mannitol is used to simulate drought stresses in tissue culture. To identify biochemical markers for stress tolerance, maize seeds were germinated under mannitol and sodium azide induced stress in controlled conditions for 7 days. Then levels of chlorophyll, carotenoids, phenolics and aldehydes produced were subsequently determined. Germination percentage was not affected by either mannitol or sodium azide and was always above 85%. However, total fresh weight decreased by 50% with the application of 153.4 mM mannitol and 0.26 mM azide in combination. This treatment significantly reduced plantlet growth from 0.94 g in the control to 0.53 g in the treated materials. Root weight reduced by 68.1%, cotyledons by 14.3%, stems by 65.0% and leaves by 70.0% in treated samples. The level of carotenoids in roots was the clearest biochemical indicator of stress produced by the mannitol and sodium azide treatment. Carotenoids increased from 0.01 µg g??1 fresh weight in the control to 9.03 µg g??1 fresh weight in the treated materials. A large-scale seed treatment with mannitol and sodium azide was carried out. 2296 seeds were placed in magenta containers with 153.4 mM mannitol and 0.26 mM NaN3. At 7 days of germination, the heaviest seedlings (450) (450/2296?=?20%) were transferred to soil environment. Forty-two plants (42/450?=?9.3%) were off-type phenotypes at 45 days. Genetic variants may have been obtained following the novel procedure described here which combines chronic treatment with sodium azide and selection pressure with mannitol to simulate drought conditions.  相似文献   

2.
A protocol for regeneration of Gentiana straminea Maxim recently established in our laboratory, somatic embryogenesis was obtained from its leaf derived calli. The gentiopicroside contents of embryogenic calli, globular-, heart-, torpedo-, and cotyledon-shaped embryoids as well as regenerated plantlets were determined by high-performance liquid chromatography. Gentiopicroside was detectable in all materials tested. Embryogenic calli showed the lowest gentiopicroside content. The changes of gentiopicroside contents were not significant (P < 0.05) with the development of somatic embryos. The highest gentiopicroside content (30.7 mg g?1 dry weight) was achieved in regenerated plantlets. The contents of gentiopicroside were not significant (P < 0.05) differences between control plants and embryogenic calli, different stages of somatic embryos and regenerated plantlets. This protocol could be employed for producing gentiopicroside or other medicinal compounds.  相似文献   

3.
利用甲基化敏感扩增多态性(MSAP)方法,对欧石楠大田苗、胚性愈伤组织和再生苗的DNA甲基化进行了研究。从64对选扩增引物中筛选出19对,共扩增得到506条带,统计显示,大田苗、胚性愈伤组织和再生苗的全基因组DNA甲基化水平分别为31.42%、27.86%和29.05%,3种试材发生甲基化变异的有175条带,变异率为34.58%。体细胞胚诱导形成胚性愈伤组织过程中,甲基化水平降低,而在再生苗中有所恢复,与大田苗接近。在外侧胞嘧啶甲基化水平上,胚性愈伤组织的甲基化水平有所增加,且在再生苗中可部分维持。另外,在175条变异带中,再生苗恢复到大田苗DNA甲基化模式的有62条,占总变异条带的35.43%,而与胚性愈伤组织维持相同DNA甲基化模式的有59条,占33.71%。回收部分甲基化变异条带,最终得到8条有效的基因组DNA序列。BLASTnI:对分析表明,在欧石楠基因组中,包括抗性基因、蛋白激酶、质体基因等在内的多种DNA序列均存在DNA基化修饰现象。  相似文献   

4.
Effects of iso-osmotic concentrations of NaCl and mannitol were studied in Mammilaria gracilis (Cactaceae) in both calli and tumors grown in vitro. In both tissues, relative growth rates were reduced under osmotic stress, which were accompanied by a decrease in both tissue water and K+ content. However, growth was inhibited to a lesser extent after exposure to NaCl, when accumulation of Na+ ions was observed. In calli, only salinity increased proline content, whereas with tumors proline accumulated after both osmotic stresses. Osmotic stresses also induced oxidative damage in both cactus tissues, although higher oxidative injury was caused by mannitol in calli and by salt in tumors. Low iso-osmotic concentrations of NaCl (75 mM) and mannitol (150 mM) increased peroxidase, ascorbate peroxidase, and esterase activities, whereas elevated catalase activity was recorded only after mannitol treatment in both tissues. High osmotic stress generally decreased enzymatic activities. However, in calli, esterase activity increased in response to high salinity, whereas ascorbate peroxidase activity was enhanced after high mannitol stress. In conclusion, both in vitro-grown cactus tissues were found to be sensitive to osmotic stress caused by either mannitol or NaCl, but accumulation of Na+ ions in response to salt somewhat contributed to osmotic adjustment. However, more prominent oxidative damage induced by NaCl compared to mannitol in tumor could be related to ion toxicity. The mechanisms that mediate responses to salt- and mannitol-induced osmotic stresses differed and were dependent on tissue type.  相似文献   

5.
We established an in vitro plant regeneration system via somatic embryogenesis of Aster scaber, an important source of various biologically active phytochemicals. We examined the callus induction and embryogenic capacities of three explants, including leaves, petioles, and roots, on 25 different media containing different combinations of α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). The optimum concentrations of NAA and BA for the production of embryogenic calli were 5.0 μM and 0.05 μM, respectively. Media containing higher concentrations of auxin and cytokinin (such as 25 μM NAA and 25 μM BA) were suitable for shoot regeneration, especially for leaf-derived calli, which are the most readily available calli and are highly competent. For root induction from regenerated shoots, supplemental auxin and/or cytokinin did not improve rooting, but instead caused unwanted callus induction or retarded growth of regenerated plants. Therefore, plant growth regulator-free medium was preferable for root induction. Normal plants were successfully obtained from calli under the optimized conditions described above. This is the first report of the complete process of in vitro plant regeneration of A. scaber via somatic embryogenesis.  相似文献   

6.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

7.
Byrsonima, especially the species Byrsonima intermedia, is an endangered Brazilian plant that has been widely used as food and for its therapeutic characteristics. However, this species faces challenges with sexual propagation, and somatic embryogenesis has emerged as a viable alternative option for propagation. Therefore, this study aimed to establish a protocol for inducing somatic embryogenesis in B. intermedia. For the induction of callus from in vitro seedling leaves, different subcultures (three subcultures, 60 days each) and concentrations of different cytokinins (BAP, TDZ, Kin and ZEA) combined with varying NAA solutions were tested. Different concentrations of NAA were also analyzed in the induction of pro-embryogenic calli. For the induction of embryogenic calli and somatic embryos, the pro-embryogenic calli were subcultured on MS medium without adding growth regulators. The somatic embryos that originated were inoculated on a maturation medium containing different concentrations of gibberellic acid (GA3). The formation of secondary embryos was also analyzed using different concentrations (0, 2.88, and 8.66 µM) of GA3 and different types of lids (Conventional lid, Biossama® commercial lid and conventional lid with membranes). The results show that for the induction of somatic embryos, the use of kinetin with NAA presented the formation of somatic embryos in the second (4.76 µM CIN?+?0.54 µM NAA) and third (5.17 µM CIN?+?10.54 µM NAA) subcultures. The use of 28.87 µM GA3 favored the formation of seedlings. The Biossama lid and 2.88 µM GA3 showed higher formation of secondary embryos.  相似文献   

8.
Effects of salinity (NaCl) and the carbon source mannitol (0–200 mM) on micropropagation of pineapple cv. MD2 were analyzed in temporary immersion bioreactors (TIBs). Shoot multiplication rate, shoot cluster fresh weight and levels of aldehydes, chlorophylls, carotenoids and phenolics were determined in the plant material. The content of soluble phenolics in the culture medium was also evaluated. NaCl or mannitol above concentrations of 50 mM decreased pineapple shoot multiplication and fresh weight significantly. Two hundred mM NaCl decreased multiplication rate by 71.5% and cluster fresh weight by 40.0%. NaCl increased 2.4 times the levels of other aldehydes; 1.4 times the soluble phenolics in shoots; and 1.4 times the phenolics excreted to the culture medium. On the other hand, mannitol decreased the multiplication rate and cluster fresh weight by about 60%. Mannitol increased the contents of chlorophyll b 1.4 times and soluble phenolics 2.1 times. Results indicated that pineapple cv. MD2 is more sensitive to NaCl than to mannitol. Multiplication rates indicate that a 50% reduction was obtained with 37.4 mM NaCl and 66.5 mM mannitol. These concentrations can be used to stress shoots during micropropagation in TIBs and screen for/detect somaclonal variants with an increased salinity or drought tolerance.  相似文献   

9.
We report an efficient somatic embryogenesis and plant regeneration system using leaf cultures of Citrullus colocynthis (L.) and assessed the effect of plant growth regulators on the regeneration process. Initially leaf explants were cultured on Murashige and Skoog medium supplemented with different concentrations of auxins viz., 2,4-dichlorophenoxyacetic acid, 1-naphthaleneacetic acid, gibberellic acid alone and along with combination of 6-benzylaminopurine. The different forms of calli such as compact, white friable, creamy friable, brownish nodular, green globular and green calli were induced from the leaf explants on MS medium containing different concentrations of auxins and gibberellins. Subsequently initial callus was subcultured at 1.5 mg L?1 BAP + 1.0 mg L?1 2,4-D which resulted in 25 % somatic embryos from 85 % nodular embryogenic nodular callus that is highest percentage. Similarly the lowest percentage of somatic embryos was recorded at 2.5 mg L?1 BAP + 0.5 mg L?1 NAA from 55 % embryogenic globular callus i.e., 16 %. High frequency of embryo development takes place at intermittent light when compared with continuous light in the individual subcultures. The cotyledonary embryos were developed into complete platelets on MS medium. In vitro regenerated plantlets were washed to remove the traces of agar and then transferred to sterile vermiculite and sand (2:1) containing pot.  相似文献   

10.
Lolium rigidum Gaud. is an annual grass grown for forage but also an economically damaging crop weed. A single genotype somatic embryogenic callus line, VLR1-60, was identified from a herbicide susceptible L. rigidum population, VLR1, and proved to be amenable to Agrobacterium tumefaciens-mediated transformation. Somatic embryogenic calli were continuously induced from the meristematic region of VLR1-60 plants multiplied in vitro and the basic tolerance level of VLR1-60 to hygromycin B was determined. A hygromycin phosphotransferase gene was used as a selectable marker for hygromycin B selection. Somatic embryogenic calli derived from in vitro grown vegetative tillers were co-cultivated with the A. tumefaciens strain EHA105 harbouring binary vector carrying reporter genes and selectable marker in the presence of acetosyringone for 3 days. Inoculated calli were recovered on callus proliferation medium containing Timentin? but lacking hygromycin and were then subcultured onto media with hygromycin concentrations increased progressively through time for selection of transformed plant cells. Putative transgenic plants were recovered and integration of transgenes was confirmed by Southern hybridization analysis and by detection of DsRed or GUS activity in transgenic plants. The frequency of plant transformation was 1.3 %. The ability to transform L. rigidum will provide opportunities for functional characterization of genes to improve forage quality and increase our understanding of the evolution of herbicide resistance and of the basic genetics underlying traits that make L. rigidum a damaging crop weed.  相似文献   

11.
Crop improvement of Coffea arabica L. (coffee) via mutagenesis could accelerate breeding programs; thus, the present study aimed to develop an in vitro protocol using the chemical mutagens sodium azide (NaN3) and ethyl methanesulfonate (EMS) on embryogenic cell suspensions of Arabica coffee variety Catuaí and, subsequently, to evaluate the responses of the resulting mutagenized tissues to salinity stress. Embryogenic suspension cultures were incubated with 0.0, 2.5, 5.0, or 10.0 mM NaN3 or 0.0, 185.2, 370.5, or 741.0 mM EMS. As the concentration of NaN3 or EMS increased, the survival of embryogenic suspension cultures decreased compared to controls. The median lethal dose (LD50) for NaN3 was 5 mM for 15 min and for EMS it was 185.2 mM for 120 min. Embryogenic suspension cultures treated with NaN3 or EMS were cultured on selective medium supplemented with 0, 50, 100, 150, 250, or 300 mM NaCl showed that 50 mM NaCl could be used as selection pressure. Plantlet growth and total amino acid content were affected by NaCl stress; some mutants had longer shoots and higher amino acid content than controls. Random amplified polymorphic DNA (RAPD) analysis was performed to determine whether the NaN3 or EMS treatments could induce genetic variability and resulted in identifiable polymorphic markers. A total of 18 10-mer primers were used to amplify genomic DNA of putative mutant and non-mutant arabica coffee embryogenic cultures and produced 50 scorable bands, of which 22% were polymorphic.  相似文献   

12.

Key message

Embryogenic suspension cultures are suitable for EMS mutagenesis in grapevine, and HRM prescreening of EMS-treated somatic embryo clusters allows rapid detection of point mutations before plant regeneration.

Abstract

Somatic embryogenesis is an excellent system for induced mutagenesis and clonal propagation in woody plants. Our work was focused on establishing a procedure for inducing ethyl methanesulfonate (EMS) mutagenesis in grapevine. Embryogenic cell aggregates (ECAs) growing in liquid medium were treated with increasing concentrations of EMS. We found that EMS dramatically affects the viability of ECAs at concentrations above 20 mM (25.5 ± 2.9 % survival), whereas concentrations above 10 mM affect embryogenic potential (22.1 ± 1.7 % of ECAs gave rise to embryos). Embryo masses generated from EMS-treated embryogenic cell aggregates were prescreened by quantitative PCR-High Resolution Melting (qPCR-HRM) to detect single nucleotide polymorphisms (SNPs) in a 1,000-bp VvNCED1-encoding DNA fragment, which served as the target gene. Detected mutations were verified in regenerated plants by PCR and sequencing. qPCR-HRM analysis of the difference plots for the fluorescence signals allowed detection of a mutation in a sample from an embryogenic aggregate treated with 10 mM EMS. To confirm the nature of the mutation, embryos from this aggregate were recovered and germinated, and leaves were collected for PCR and sequencing analysis. The alignment of sequences from regenerated plants with the wild-type sequence revealed a transitional mutation (G/C to A/T) in the 1,000-bp VvNCED1-encoding region. To our knowledge, this is the first time that EMS mutagenesis has been performed using an embryogenic cell suspension of grapevine.  相似文献   

13.
We developed an efficient and simple system for inducing somatic embryogenesis and regenerating plantlets from mature zygotic embryos of oil palm. Embryogenic calli were induced from mature zygotic embryos of oil palm on modified Murashige and Skoog medium with 2,4-dichlorophenoxyacetic acid or picloram, alone or in combination with activated charcoal. The greatest frequency of embryogenic callus induction (97.5%) was obtained by culturing mature zygotic embryos on callus induction medium with 450 μM picloram and 2.5 g?L?1 activated charcoal. Embryogenic calli proliferated on a medium with a reduced concentration of picloram. Embryogenic calli were then subcultured on a medium supplemented with 12.3 μM 2-isopentenyladenine and 0.54 μM naphthaleneacetic acid, with subcultures at 4-wk intervals. Somatic embryos were regenerated on a medium with Murashige and Skoog macro- and micronutrients at half-strength concentrations supplemented with 20 g?L?1 sucrose, 2.5 g?L?1 activated charcoal, and 2.5 g?L?1 Phytagel. Detailed histological analysis revealed that somatic embryogenesis followed an indirect pathway. Primary calli were observed after 4–6 wk of culture and progressed to embryogenic calli at 12 wk. Embryogenic cells exhibited dense protoplasm, a high nucleoplasmic ratio, and small starch grains. Proembryos, which seemed to have a multicellular origin, formed after 16–20 wk of culture and successive cell divisions. Differentiated somatic embryos had a haustorium, a plumule, and the first and second foliar sheaths. In differentiated embryos, the radicular protrusion was not apparent because it generally does not appear until after the first true leaves emerge.  相似文献   

14.
The embryonic calli produced from immature embryos of inbred “Huangzhao-4” of maize, that had been maintained for half a year, were transferred to media supplemented with different NaC1 concentrations (5, 10, 15, 20, 25, 30g/L) for callus selection. NaCl tolerant calli were established through three generations of selections. The growth and frequency of survival calli were affected significantly by NaCl concentration. The proliferetion of NaCl-tolerant calli was relatively good on medium containing of 10g/L NaC1. From these calli, plant lets could be produced on differentiation medium. On medium supplemented with 10g/L of NaC1 the plantlets could normally grow to transplantation. In NaCl-tolerant calli cultured on medium containing 10g/L of NaC1, the contents of free amino acids, free proline, Na+, K+ were 18.0%,87.3%,661.9%,25.5% respectively higher than those in un-selected calli grown on subculture medium, but Ca2+ content decreased significantly. On medium containing 10g/L of NaC1, cells and their organelles in NaCl-tolerant calli had normal morphology and structure, and vigorous metabolism, but in un-selected calli, the majority of cells turned to wards dying. Although tolerant plants regenerated and their filial ones had grown in non-salted soil, their progenies retained the property tolerance, but showed segregation of the degrees of tolerance. In 10g/L NaC1 solution, the seeds of progenies from one plant regenerated could germinate normally, and grow into healthy seedlings. Therefore, the NaCl-tolerant calli and plantlets that we have obtained NaCl-tolerant variants.  相似文献   

15.
The effects were studied of various carbohydrates and osmoticstress, created by high agarose or carbohydrate concentrations,on the regeneration of fertile plants from protoplast-denvedcolonies of several indica (IR43, Jaya, Pusa Basmati 1) andjaponica (Taipei 309) rice varieties. Observations of the culturesdeveloped on media containing one of these carbohydrates (cellobiose,fructose, glucose, lactose, maltose, mannitol, sorbitol or sucrose),each at 88 mM, indicated that maltose was the preferential carbonsource for the proliferation of embryogenic callus and shootregeneration. Maltose-containing medium induced shoot formationin 24–66% of the protoplast-derived tissues, dependingupon the rice variety, compared to shoot regeneration from 4–32%of the tissues in sucrose-supplemented medium. Media containing288 mM maltose or an equimolar combination of 88 mM maltoseand 200 mM mannitol, caused water loss from calli and promotedthe growth of embryogenic calli. These calli formed shoots withgreater frequencies when subsequently transferred to shoot regenerationmedium with 88 mM maltose. A medium containing 88 mM maltoseand semi-solidified with 1.0% (w/v) instead of 0.5% (w/v) agarosehad a similar beneficial effect on the growth of embryogeniccalli and simultaneously supported high-frequency (48–55%)shoot formation. The optimum shoot regeneration frequencies(60–78%) were obtained when protoplast-derived colonieswere serially cultured on to shoot regeneration medium containing1.0% (w/v) agarose for 4 weeks, followed by a 2-week cultureperiod on the same medium with 0.5% (w/v) agarose. Plants regeneratedon medium containing maltose and/or 1.0% (w/v) agarose werephenotypically normal and fertile. Key words: Carbohydrates, Oryza sativa L, indica and japonica rice, osmotic stress, plant regeneration, protoplast-derived colonies  相似文献   

16.
The progenies of rice plants (Oryza sativa L.) differentiated from calli that had been cryopreserved and from control (non-cryopreserved) calli were used to study the influence of selection pressure during cryopreservation. The phenotypic evaluation of these progenies was based mainly on the response of seedlings and calli to freezing stress and on the characterization of protoplast and cell populations by flow cytometric analyses. The patterns of response to freezing stress, as well as the variations in some morphological and physiological cell parameters, were unrelated to the origin (cryopreserved or control calli) of the parental plants. Received: 6 August 1997 / Revised received: 28 November 1997 / Accepted: 20 January 1998  相似文献   

17.
Flow cytometry and chromosome counts were used to analyze the genetic stability of plants regenerated via Musa acuminata Colla (AA) ssp. malaccensis embryogenic cell suspension (ECS) cultures. These cultures were initiated from immature zygotic embryos (IZE) on Murashige and Skoog medium using nine different plant growth regulator (PGR) treatments. Highest percentage of embryogenic calli (EC) formation occurred on media with 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D, 97 %), and 8.2 μM of picloram (Pi, 80 %) followed by 2.2 μM 2,4-D (75 %). Embryonic development was synchronized in liquid medium by filtration, and somatic embryo development was achieved with ECS aliquots overlaid on PGR-free medium. The EC medium composition and elapsed time of both short-term (~5 months old) and long-term (~2 years old) ECS cultures influenced plant regeneration, resulting in 65–99 % embryo germination and 50 to 100 % plant conversion. The mean 2C DNA content (1.23 ± 0.002 pg) and chromosome number (2n = 2x = 22) of M. acuminata ssp. malaccensis IZEs, seedlings and sucker plantlets were similar to the reported values. No significant differences were detected among IZEs before culturing, and none were found among the IZEs and leaves of control plants and the plants regenerated from short-term ECS lines when initiated with 2,4-D or Pi vis-à-vis the accession from which they originated. However, plants regenerated from the long-term ECS-L3 culture remained diploid, had the highest DNA content (2C = 1.283 ± 0.01 pg) and were clearly separate from the other regenerated and control plants.  相似文献   

18.
In vitro selection of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl was achieved using embryogenic suspension cultures of sweetpotato cv. Lizixiang and gamma-ray induced mutation. Cell aggregates from embryogenic suspension cultures of Lizixiang were irradiated with 80 Gy gamma-ray, and 1 week after irradiation they were cultured in a selective medium containing 342 mM NaCl for in vitro selection. A total of 276 plants were regenerated from the irradiated 2,783 cell aggregates by a two-step in vitro selection procedure. After the regenerated plants were propagated into plant lines on the basal medium, they were cultured on the medium supplemented with 86, 171, 257 and 342 mM NaCl, respectively, in order to evaluate their in vitro salt tolerance. Of them 18 plant lines showed significantly higher in vitro salt tolerance than control plants. Proline and superoxide dismutase (SOD) were more accumulated in these 18 plant lines than in control plants when both were exposed to NaCl. Salt tolerance of the 18 plant lines was further evaluated with Hoalgland solution containing different concentrations of NaCl in a greenhouse. The results indicated that 3 of them had significantly better growth and rooting ability than the remaining 15 plant lines and control plants at 171 mM NaCl.  相似文献   

19.
Abstract

A step by step protocol for resistant calli selection via a tissue culture technique under stress of Pyricularia oryzae culture filtrates was followed. Rice embryos dissected apart from the endosperm of susceptible rice seeds (Giza 176 and Riho) to P. oryzae produced embryonic calli on media containing various growth regulators of 2,4-D at concentrations of 0, 1, 1.5 and 2 mg/L and/or benzyl amino purine (BAP) at 0, 0.5, 1 and 1.5 mg/L when incubated under complete dark conditions for three weeks. Embryonic explants only produced shoots on media containing BAP. Selection of resistant calli was carried out in vitro under the challenging stress of increasing concentration of the pathogen P. oryzae culture filtrate (CF) from “0” up to 100%. The selection protocol has two directions. The first is step-by-step selection from lower to higher selective (CF) concentrations. The second is the exchangeable continuous cycles with and without the same selective (CF) concentration until the end of the selection regime to avoid calli adaptation to (CF). The regenerated calli to plantlets occurred under (CF) stress showed resistance and susceptibility when exposed to the pathogen infection under greenhouse conditions. The results reveal that the resistance in regenerated rice plantlets to P. oryzae pathogen segregated as 1 resistant: 2 moderate resistant: 1 susceptible giving the predication that the resistance in rice to P. oryzae may be controlled by one pair of genes. The in vitro selective regime via tissue cultures is advisable for the selection of novel disease resistant plants because of its time saving, space, money, it is easily applied and has a bio-safe approach.  相似文献   

20.
A bioassay system was developed for studying the in vitro reaction of sunflower ( Helianthus annuus L. cv. 'Nanus') against the toxin produced by the virulent pathotype IMI 366417 (1) of the pathogenic fungus Alternaria alternata. Cotyledons from 2-week-old seedlings were cultured on a MS (Murashige and Skoog) medium supplemented with 0.3 μM NAA (α-napthylacetic acid) and 1.3 μM BA (6-benzyladenine). Exponentially growing calli were transferred to selective media containing toxin solutions at various concentrations. The fresh weight of the cultured calli was reduced as the toxin concentration increased, although the viability of the cells, expressed as callus dehydrogenase activity, increased. Selection for toxinresistant genotypes was attempted at 30% toxin concentration, which causes a 90% reduction in callus growth. After one month in culture, 18% of the calli demonstrated resistance to the toxin. However, no plants could be regenerated from those calli after transfer onto a MS medium supplemented with 5.4 μM NAA and 4.4 μM BA. The effect of the toxin purification method on toxin yield and biological activity, as well as its possible mode of cellular action are discussed. The results of these experiments may contribute to a better understanding of the disease mechanism and help establish an efficient selection method of resistant sunflower genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号