首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The families of 126 consecutive patients with Haemophilus influenzae type B meningitis were surveyed for secondary invasive H influenzae disease among household contacts. A total of 120 of the families were contacted. In six cases no contact was possible and the medical record was reviewed. Some 555 household contacts were found; 31% (171) were under 5 years of age. A secondary case was defined as a household contact with H influenzae type B isolated from blood or cerebrospinal fluid more than 24 hours, but less than 30 days, after admission to hospital of the index case. Four secondary cases were identified, all in children aged under 5 years. The secondary attack rate in children under 5 years or less in the month after exposure to an index case was thus 2.3%, 800 times the endemic attack rate for H influenzae meningitis. This is a conservative estimate since five additional contact cases were documented, but not included in the secondary attack rate. Young contacts of a child with H influenzae meningitis are thus at significant risk of life-threatening secondary disease.  相似文献   

2.
The household secondary attack risk (SAR), often called the secondary attack rate or secondary infection risk, is the probability of infectious contact from an infectious household member A to a given household member B, where we define infectious contact to be a contact sufficient to infect B if he or she is susceptible. Estimation of the SAR is an important part of understanding and controlling the transmission of infectious diseases. In practice, it is most often estimated using binomial models such as logistic regression, which implicitly attribute all secondary infections in a household to the primary case. In the simplest case, the number of secondary infections in a household with m susceptibles and a single primary case is modeled as a binomial(m, p) random variable where p is the SAR. Although it has long been understood that transmission within households is not binomial, it is thought that multiple generations of transmission can be neglected safely when p is small. We use probability generating functions and simulations to show that this is a mistake. The proportion of susceptible household members infected can be substantially larger than the SAR even when p is small. As a result, binomial estimates of the SAR are biased upward and their confidence intervals have poor coverage probabilities even if adjusted for clustering. Accurate point and interval estimates of the SAR can be obtained using longitudinal chain binomial models or pairwise survival analysis, which account for multiple generations of transmission within households, the ongoing risk of infection from outside the household, and incomplete follow-up. We illustrate the practical implications of these results in an analysis of household surveillance data collected by the Los Angeles County Department of Public Health during the 2009 influenza A (H1N1) pandemic.  相似文献   

3.
基于LMDI分解的厦门市碳排放强度影响因素分析   总被引:5,自引:0,他引:5  
研究碳排放强度的变化趋势及其影响因素对于指导低碳城市建设具有重要意义。应用对数平均权重分解法(LMDI),基于厦门市2005—2010年各部门终端消费数据对碳排放强度指标进行因素分解,并将传统分析仅注重产业部门的能源碳排放,拓展到全面考虑产业部门和家庭消费的能源活动和非能源活动影响。研究结果表明:2005—2010年厦门市碳排放强度下降17.29%,其中产业部门能源强度对总碳排放强度变化影响最大(贡献63.07%),家庭消费能源强度是碳排放强度下降的主要抑制因素(-45.46%)。从影响效应角度看,经济效率对碳排放强度下降贡献最大,碳排系数减排贡献最小;从部门减排贡献角度看,第二产业贡献最大,家庭消费贡献最小。总体而言,厦门市未来碳减排重点部门在第二产业,优化产业结构和能源结构有较大减排潜力。  相似文献   

4.
不同生计方式农户的环境感知——以甘南高原为例   总被引:4,自引:0,他引:4  
赵雪雁 《生态学报》2012,32(21):6776-6787
准确的环境感知是合理环境行为的前提,利用参与式农村评估方法,研究了甘南高原不同生计方式农户的环境感知。结果发现:(1)甘南高原农户生计方式较单一,生计多样化指数仅为1.76,纯牧区、半农半牧区、农区农户的非农化水平依次提高,但非农活动均以外出打工为主;(2)随着非农化水平的提高,农户的生态关注度、生态保护认知度以及生态变化感知度发生有规律变化,纯农户、兼业户、非农户的生态关注度、生态恶化感知度依次降低,但生态保护认知度依次增强; 3) 非农户、兼业户的环保活动参与度强于纯农户。  相似文献   

5.

Background

Disease transmission patterns are needed to inform public health interventions, but remain largely unknown for avian influenza H5N1 virus infections. A recent study on the 139 outbreaks detected in Indonesia between 2005 and 2009 found that the type of exposure to sources of H5N1 virus for both the index case and their household members impacted the risk of additional cases in the household. This study describes the disease transmission patterns in those outbreak households.

Methodology/Principal Findings

We compared cases (n = 177) and contacts (n = 496) in the 113 sporadic and 26 cluster outbreaks detected between July 2005 and July 2009 to estimate attack rates and disease intervals. We used final size household models to fit transmission parameters to data on household size, cases and blood-related household contacts to assess the relative contribution of zoonotic and human-to-human transmission of the virus, as well as the reproduction number for human virus transmission. The overall household attack rate was 18.3% and secondary attack rate was 5.5%. Secondary attack rate remained stable as household size increased. The mean interval between onset of subsequent cases in outbreaks was 5.6 days. The transmission model found that human transmission was very rare, with a reproduction number between 0.1 and 0.25, and the upper confidence bounds below 0.4. Transmission model fit was best when the denominator population was restricted to blood-related household contacts of index cases.

Conclusions/Significance

The study only found strong support for human transmission of the virus when a single large cluster was included in the transmission model. The reproduction number was well below the threshold for sustained transmission. This study provides baseline information on the transmission dynamics for the current zoonotic virus and can be used to detect and define signatures of a virus with increasing capacity for human-to-human transmission.  相似文献   

6.
Transmission and dynamics of tuberculosis on generalized households   总被引:3,自引:0,他引:3  
Tuberculosis (TB) transmission is enhanced by systematic exposure to an infectious individual. This enhancement usually takes place at either the home, workplace, and/or school (generalized household). Typical epidemiological models do not incorporate the impact of generalized households on the study of disease dynamics. Models that incorporate cluster (generalized household) effects and focus on their impact on TB's transmission dynamics are developed. Detailed models that consider the effect of casual infections, that is, those generated outside a cluster, are also presented. We find expressions for the Basic Reproductive Number as a function of cluster size. The formula for R0 separates the contributions of cluster and casual infections in the generation of secondary TB infections. Relationships between cluster and classical epidemic models are discussed as well as the concept of critical cluster size.  相似文献   

7.
Between 1969 and 1975 in California, 1,953 cases of meningococcal disease were reported. For cases reported in 1973, 1974 and 1975, detailed information about chemoprophylaxis of cases and contacts was obtained in addition to demographic and laboratory data. A review of data for the seven years showed a reduction in the case rate from 2.6 to 0.6 per 100,000 population, but this drop was due primarily to a very substantial decline in the military rate from 35.7 to 1.8 per 100,000 population. No reduction was apparent in the case fatality rate. Five groups of associated meningococcal disease cases were identified for a total of nine secondary or coprimary cases among 862 household contacts. Associated cases occurred in 10.4 per 1,000 household contacts—a rate several hundred times greater than that for the general population.The study findings indicate that many physicians are unaware of the following: (1) nonhousehold contacts are at little or no risk of contracting meningococcal disease; (2) prophylaxis should be offered only to household or intimate contacts immediately upon identification of an index case without waiting for test results for meningococcal carriage; (3) valid medical and epidemiologic indications exist for administering prophylaxis to household contacts who are culture negative as well as those who are culture positive; (4) the current drug of choice for prophylaxis is rifampin, but since no drug is completely effective, close medical observation remains the most important factor in the management of household or intimate contacts to meningococcal disease.  相似文献   

8.
Accumulating infections of highly pathogenic H5N1 avian influenza in humans underlines the need to track the ability of these viruses to spread among humans. A human-transmissible avian influenza virus is expected to cause clusters of infections in humans living in close contact. Therefore, epidemiological analysis of infection clusters in human households is of key importance. Infection clusters may arise from transmission events from (i) the animal reservoir, (ii) humans who were infected by animals (primary human-to-human transmission), or (iii) humans who were infected by humans (secondary human-to-human transmission). Here we propose a method of analysing household infection data to detect changes in the transmissibility of avian influenza viruses in humans at an early stage. The method is applied to an outbreak of H7N7 avian influenza virus in The Netherlands that was the cause of more than 30 human-to-human transmission events. The analyses indicate that secondary human-to-human transmission is plausible for the Dutch household infection data. Based on the estimates of the within-household transmission parameters, we evaluate the effectiveness of antiviral prophylaxis, and conclude that it is unlikely that all household infections can be prevented with current antiviral drugs. We discuss the applicability of our method for the detection of emerging human-to-human transmission of avian influenza viruses in particular, and for the analysis of within-household infection data in general.  相似文献   

9.

Background

Tuberculosis is an ancient disease that continues to threaten individual and public health today, especially in sub-Saharan Africa. Current surveillance systems describe general risk of tuberculosis in a population but do not characterize the risk to an individual following exposure to an infectious case.

Methods

In a study of household contacts of infectious tuberculosis cases (n = 1918) and a community survey of tuberculosis infection (N = 1179) in Kampala, Uganda, we estimated the secondary attack rate for tuberculosis disease and tuberculosis infection. The ratio of these rates is the likelihood of progressive primary disease after recent household infection.

Results

The secondary attack rate for tuberculosis disease was 3.0% (95% confidence interval: 2.2, 3.8). The overall secondary attack rate for tuberculosis infection was 47.4 (95% confidence interval: 44.3, 50.6) and did not vary widely with age, HIV status or BCG vaccination. The risk for progressive primary disease was highest among the young or HIV infected and was reduced by BCG vaccination.

Conclusions

Early case detection and treatment may limit household transmission of M. tuberculosis. Household members at high risk for disease should be protected through vaccination or treatment of latent tuberculosis infection.  相似文献   

10.
To determine the incidence of secondary meningococcal infection in close family and household contacts of index patients and to review the efficacy of chemoprophylaxis the records of 3256 cases occurring from 1984 through 1987 were examined. Seventeen secondary cases (0.5%) of infection were identified among these groups. The median interval between index and secondary cases was seven weeks. Fourteen secondary cases occurred more than one week after the disease was diagnosed in the index case. Three secondary cases had not received chemoprophylaxis and in another case the infecting strain had acquired resistance to rifampicin. Prophylaxis for the close contacts of 10 out of 11 of the remaining index patients failed to fulfil all the criteria of an optimal regimen. Even after optimal chemoprophylaxis the medical practitioner and the family should be aware of the increased and prolonged risk of secondary meningococcal infection among close contacts of patients with the disease.  相似文献   

11.

Background

There are sparse data on whether non-pharmaceutical interventions can reduce the spread of influenza. We implemented a study of the feasibility and efficacy of face masks and hand hygiene to reduce influenza transmission among Hong Kong household members.

Methodology/Principal Findings

We conducted a cluster randomized controlled trial of households (composed of at least 3 members) where an index subject presented with influenza-like-illness of <48 hours duration. After influenza was confirmed in an index case by the QuickVue Influenza A+B rapid test, the household of the index subject was randomized to 1) control or 2) surgical face masks or 3) hand hygiene. Households were visited within 36 hours, and 3, 6 and 9 days later. Nose and throat swabs were collected from index subjects and all household contacts at each home visit and tested by viral culture. The primary outcome measure was laboratory culture confirmed influenza in a household contact; the secondary outcome was clinically diagnosed influenza (by self-reported symptoms). We randomized 198 households and completed follow up home visits in 128; the index cases in 122 of those households had laboratory-confirmed influenza. There were 21 household contacts with laboratory confirmed influenza corresponding to a secondary attack ratio of 6%. Clinical secondary attack ratios varied from 5% to 18% depending on case definitions. The laboratory-based or clinical secondary attack ratios did not significantly differ across the intervention arms. Adherence to interventions was variable.

Conclusions/Significance

The secondary attack ratios were lower than anticipated, and lower than reported in other countries, perhaps due to differing patterns of susceptibility, lack of significant antigenic drift in circulating influenza virus strains recently, and/or issues related to the symptomatic recruitment design. Lessons learnt from this pilot have informed changes for the main study in 2008.

Trial Registration

ClinicalTrials.gov NCT00425893 HKClinicalTrials.com HKCTR-365  相似文献   

12.

Background

Influenza viral shedding studies provide fundamental information for preventive strategies and modelling exercises. We conducted a prospective household study to investigate viral shedding in seasonal and pandemic influenza between 2007 and 2011 in Berlin and Munich, Germany.

Methods

Study physicians recruited index patients and their household members. Serial nasal specimens were obtained from all household members over at least eight days and tested quantitatively by qRT-PCR for the influenza virus (sub)type of the index patient. A subset of samples was also tested by viral culture. Symptoms were recorded daily.

Results

We recruited 122 index patients and 320 household contacts, of which 67 became secondary household cases. Among all 189 influenza cases, 12 were infected with seasonal/prepandemic influenza A(H1N1), 19 with A(H3N2), 60 with influenza B, and 98 with A(H1N1)pdm09. Nine (14%) of 65 non-vaccinated secondary cases were asymptomatic/subclinical (0 (0%) of 21 children, 9 (21%) of 44 adults; p = 0.03). Viral load among patients with influenza-like illness (ILI) peaked on illness days 1, 2 or 3 for all (sub)types and declined steadily until days 7–9. Clinical symptom scores roughly paralleled viral shedding dynamics. On the first day prior to symptom onset 30% (12/40) of specimens were positive. Viral load in 6 asymptomatic/subclinical patients was similar to that in ILI-patients. Duration of infectiousness as measured by viral culture lasted approximately until illness days 4–6. Viral load did not seem to be influenced by antiviral therapy, age or vaccination status.

Conclusion

Asymptomatic/subclinical infections occur infrequently, but may be associated with substantial amounts of viral shedding. Presymptomatic shedding may arise in one third of cases, and shedding characteristics appear to be independent of (seasonal or pandemic) (sub)type, age, antiviral therapy or vaccination; however the power to find moderate differences was limited.  相似文献   

13.
The article deals with the main scientific propositions of an original epidemiological theory, viz. the theory of the etiological selectivity of the main (primary) routes of transmission and their differences in various nosological forms of enteric infections (the theory of conformity). As proved on the basis of scientific investigations carried out for the period of several years, the role of various routes forming the fecal-oral mechanism of transmission (alimentary, aqueous, household) is highly different. In some enteric infections one of these routes becomes the primary (main) route, while other routes are secondary (additional). The primary route determines the wide spread of the corresponding nosological forms of enteric infections (the theory of conformity) and the preservation of their causative agents in nature as species. The secondary routes are only complementary to the activity of the main route of transmission in some degree. In controlling enteric infections, the measures taken with a view to suppressing the activity of the primary route of transmission are, from the epidemiological standpoint in the close and remote prospects, the cardinal ones, while the measures directed against the secondary routes are only palliative.  相似文献   

14.

Background

Knowledge of how influenza viruses spread in a community is important for planning and implementation of effective interventions, including social distancing measures. Households and schools are implicated as the major sites for influenza virus transmission. However, the overall picture of community transmission is not well defined during actual outbreaks. We conducted a community-based prospective cohort study to describe the transmission characteristics of influenza in Mongolia.

Methods and Findings

A total of 5,655 residents in 1,343 households were included in this cohort study. An active search for cases of influenza-like illness (ILI) was performed between October 2010 and April 2011. Data collected during a community outbreak of influenza A(H3N2) were analyzed. Total 282 ILI cases occurred during this period, and 73% of the subjects were aged <15 years. The highest attack rate (20.4%) was in those aged 1–4 years, whereas the attack rate in those aged 5–9 years was 10.8%. Fifty-one secondary cases occurred among 900 household contacts from 43 households (43 index cases), giving an overall crude household secondary attack rate (SAR) of 5.7%. SAR was significantly higher in younger household contacts (relative risk for those aged <1 year: 9.90, 1–4 years: 5.59, and 5–9 years: 6.43). We analyzed the transmission patterns among households and a community and repeated transmissions were detected between households, preschools, and schools. Children aged 1–4 years played an important role in influenza transmission in households and in the community at large. Working-age adults were also a source of influenza in households, whereas elderly cases (aged ≥65 years) had no link with household transmission.

Conclusions

Repeated transmissions between households, preschools, and schools were observed during an influenza A(H3N2) outbreak period in Mongolia, where subjects aged 1–4 years played an important role in influenza transmission.  相似文献   

15.
Hirotsu N  Wada K  Oshitani H 《PloS one》2012,7(2):e31519

Background

Household transmission of influenza can affect the daily lives of patients and their families and be a trigger for community transmission, thus it is necessary to take precautions to prevent household transmission. We aimed to determine the risks of household transmission of pandemic (H1N1) 2009 influenza virus from an index patient who visited a primary clinic and was treated with antiviral drugs.

Methods

We followed up all the patients who were diagnosed with influenza A by rapid diagnostic test with a questionnaire or interview from July 2009 to April 2010. Secondary cases were defined as patients visiting the clinic or other clinics and being positive for influenza A by rapid diagnostic test within 7 days of onset of an index patient. Logistic regression analysis was used to explore the association between household transmission and the studied variables.

Results

We recruited 591 index patients and 1629 household contacts. The crude secondary attack rate was 7.3% [95% confidence interval (CI): 6.1–8.7]. Age of index patients (0–6 years old: odds ratio 2.56; 95% CI: 1.31–4.01; 7–12 years old: 2.44, 1.31–3.72; 30–39 years old 3.88; 2.09–5.21; 40 years old or more 2.76; 1.17–4.53) and number of household members with five or more (3.09, 2.11–4.07), medication started ≥48 hours from the onset of fever (2.38, 1.17–3.87) were significantly associated with household transmission.

Conclusions

Household transmission was associated with index patients aged ≤12 years old and adults ≥30 years with children, with more than five persons in the household, and medication initiated ≥48 hours from the onset of fever among the population, in which, antiviral treatment was given to all patients. We need to warn patients at high risk of household transmission to take additional precautions.  相似文献   

16.
As the pandemic (H1N1) 2009 progressed, the Ministry of Health of China advised cases with mild symptoms to remain home for isolation and observation, which may have increased the risk for infection among other household members. Describing the transmission characteristics of this novel virus is indispensable to effectively controlling the spread of disease; thus, the aim of this study was to assess risk factors associated with household transmission of pandemic H1N1 from self-quarantined patients in Beijing, the capital city of China. A 1:2 case-control study with 54 case households and 108 control households was conducted between August 1 and September 30, 2009 in Beijing. Cases were households with a self-quarantined index patient and a secondary case, while controls were households with a self-quarantined index patient and a close contact. Controls were also matched to cases for sex and age of index case-patient. A structured interview guide was used to collect the data. Conditional logistical models were employed to estimate Odds Ratios (OR) with 95% confidence intervals (95% CI). Results indicated that higher education level (OR 0.42; 95% CI 0.22-0.83), sharing room with an index case-patient (OR 3.29; 95%CI 1.23-8.78), daily room ventilation (OR 0.28; 95%CI 0.08-0.93), and hand washing ≥3/d (OR 0.71; 95%CI 0.48-0.94) were related to the household transmission of pandemic H1N1 from self-quarantined patients. These results highlight that health education, as well as the quarantine of the index case-patient immediately after infection, frequent hand hygiene, and ventilation are critical to mitigating household spread of pandemic H1N1 virus and minimizing its impact. Household contacts should be educated to promote these in-home practices to contain transmission, particularly when household members are quarantined at home.  相似文献   

17.
The clinical serial interval of an infectious disease is the time between date of symptom onset in an index case and the date of symptom onset in one of its secondary cases. It is a quantity which is commonly collected during a pandemic and is of fundamental importance to public health policy and mathematical modelling. In this paper we present a novel method for calculating the serial interval distribution for a Markovian model of household transmission dynamics. This allows the use of Bayesian MCMC methods, with explicit evaluation of the likelihood, to fit to serial interval data and infer parameters of the underlying model. We use simulated and real data to verify the accuracy of our methodology and illustrate the importance of accounting for household size. The output of our approach can be used to produce posterior distributions of population level epidemic characteristics.  相似文献   

18.

Background

Pandemic influenza A(H1N1)pdm09 emerged in Thailand in 2009. A prospective longitudinal adult cohort and household transmission study of influenza-like illness (ILI) was ongoing in rural Thailand at the time of emergence. Symptomatic and subclinical A(H1N1)pdm09 infection rates in the cohort and among household members were evaluated.

Methods

A cohort of 800 Thai adults underwent active community-based surveillance for ILI from 2008–2010. Acute respiratory samples from ILI episodes were tested for A(H1N1)pdm09 by qRT-PCR; acute and 60-day convalescent blood samples were tested by A(H1N1)pdm09 hemagglutination inhibition assay (HI). Enrollment, 12-month and 24-month follow-up blood samples were tested for A(H1N1)pdm09 seroconversion by HI. Household members of influenza A-infected cohort subjects with ILI were enrolled in household transmission investigations in which day 0 and 60 blood samples and acute respiratory samples were tested by either qRT-PCR or HI for A(H1N1)pdm09. Seroconversion between annual blood samples without A(H1N1)pdm09-positive ILI was considered as subclinical infection.

Results

The 2-yr cumulative incidence of A(H1N1)pdm09 infection in the cohort in 2009/2010 was 10.8% (84/781) with an annual incidence of 1.2% in 2009 and 9.7% in 2010; 83.3% of infections were subclinical (50% in 2009 and 85.9% in 2010). The 2-yr cumulative incidence was lowest (5%) in adults born ≤1957. The A(H1N1)pdm09 secondary attack rate among household contacts was 47.2% (17/36); 47.1% of these infections were subclinical. The highest A(H1N1)pdm09 secondary attack rate among household contacts (70.6%, 12/17) occurred among children born between 1990 and 2003.

Conclusion

Subclinical A(H1N1)pdm09 infections in Thai adults occurred frequently and accounted for a greater proportion of all A(H1N1)pdm09 infections than previously estimated. The role of subclinical infections in A(H1N1)pdm09 transmission has important implications in formulating strategies to predict and prevent the spread of A(H1N1)pdm09 and other influenza virus strains.  相似文献   

19.

Background

The transmission of influenza viruses occurs person to person and is facilitated by contacts within enclosed environments such as households. The aim of this study was to evaluate secondary attack rates and factors associated with household transmission of laboratory-confirmed influenza A(H1N1)pdm09 in the pandemic and post-pandemic seasons.

Methods

During the 2009–2010 and 2010–2011 influenza seasons, 76 sentinel physicians in Navarra, Spain, took nasopharyngeal and pharyngeal swabs from patients diagnosed with influenza-like illness. A trained nurse telephoned households of those patients who were laboratory-confirmed for influenza A(H1N1)pdm09 to ask about the symptoms, risk factors and vaccination status of each household member.

Results

In the 405 households with a patient laboratory-confirmed for influenza A(H1N1)pdm09, 977 susceptible contacts were identified; 16% of them (95% CI 14–19%) presented influenza-like illness and were considered as secondary cases. The secondary attack rate was 14% in 2009–2010 and 19% in the 2010–2011 season (p = 0.049), an increase that mainly affected persons with major chronic conditions. In the multivariate logistic regression analysis, the risk of being a secondary case was higher in the 2010–2011 season than in the 2009–2010 season (adjusted odds ratio: 1.72; 95% CI 1.17–2.54), and in children under 5 years, with a decreasing risk in older contacts. Influenza vaccination was associated with lesser incidence of influenza-like illness near to statistical significance (adjusted odds ratio: 0.29; 95% CI 0.08–1.03).

Conclusion

The secondary attack rate in households was higher in the second season than in the first pandemic season. Children had a greater risk of infection. Preventive measures should be maintained in the second pandemic season, especially in high-risk persons.  相似文献   

20.
Looker C  Carville K  Grant K  Kelly H 《PloS one》2010,5(10):e13702

Background

We characterise the clinical features and household transmission of pandemic influenza A (pH1N1) in community cases from Victoria, Australia in 2009.

Methods

Questionnaires were used to collect information on epidemiological characteristics, illness features and co-morbidities of cases identified in the 2009 Victorian Influenza Sentinel Surveillance program.

Results

The median age of 132 index cases was 21 years, of whom 54 (41%) were under 18 years old and 28 (21%) had medical co-morbidities. The median symptom duration was significantly shorter for children who received antivirals than in those who did not (p = 0.03). Assumed influenza transmission was observed in 63 (51%) households. Influenza-like illness (ILI) developed in 115 of 351 household contacts, a crude secondary attack rate of 33%. Increased ILI rates were seen in households with larger numbers of children but not larger numbers of adults. Multivariate analysis indicated contacts of cases with cough and diarrhoea, and contacts in quarantined households were significantly more likely to develop influenza-like symptoms.

Conclusion

Most cases of pH1N1 in our study were mild with similar clinical characteristics to seasonal influenza. Illness and case features relating to virus excretion, age and household quarantine may have influenced secondary ILI rates within households.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号