首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anthocyanins play important role in plant protection and were closely involved with the plant evolution. Anthocyanidin synthase (ANS) is a late key enzyme in the flavonoid pathway which can catalyze leucoanthocyanidins to anthocyanidins. By our study, we found a miniature inverted-repeat transposable element (MITE) inserting in the promoter of ANS gene of mulberry. We used strawberry to evaluate the activities of ANS promoters from Morus alba and Morus notabilis with the method of Agrobacterium-mediated transient expression. The expression patterns of different promoters were also analyzed in transgenic lines of Arabidopsis thaliana and in this study, GUS was used as reporter gene. The 564-bp MITE insertion was strongly required for the activities of ANS promoter and it may reprogram the expression profiles of ANS gene in mulberry. Our results suggested that the MITE insertion was probably involved in either domestication or natural selection.  相似文献   

2.
This is the first report on Agrobacterium rhizogenes-mediated transformation of Withania somnifera for expression of a foreign gene in hairy roots. We transformed leaf and shoot tip explants using binary vector having gusA as a reporter gene and nptII as a selectable marker gene. To improve the transformation efficiency, acetosyringone (AS) was added in three stages, Agrobacterium liquid culture, Agrobacterium infection and co-culture of explants with Agrobacterium. The addition of 75 μM AS to Agrobacterium liquid culture was found to be optimum for induction of vir genes. Moreover, the gusA gene expression in hairy roots was found to be best when the leaves and shoot tips were sonicated for 10 and 20s, respectively. Based on transformation efficiency, the Agrobacterium infection for 60 and 120 min was found to be suitable for leaves and shoot tips, respectively. Amongst the various culture media tested, MS basal medium was found to be best in hairy roots. The transformation efficiency of the improved protocol was recorded 66.5 and 59.5?% in the case of leaf and shoot tip explants, respectively. When compared with other protocols the transformation efficiency of this improved protocol was found to be 2.5 fold higher for leaves and 3.7 fold more for shoot tips. Southern blot analyses confirmed 1–2 copies of the gusA transgene in the lines W1-W4, while 1–4 transgene copies were detected in the line W5 generated by the improved protocol. Thus, we have established a robust and efficient A. rhizogenes mediated expression of transgene (s) in hairy roots of W. somnifera.  相似文献   

3.
4.
5.
The Agrobacterium-mediated transient assay is a relatively rapid technique and a promising approach for assessing the expression of a gene of interest. Despite the successful application of this transient expression system in several plant species, it is not well understood in spinach. In this study, we analyzed various factors, including infiltration method, Agrobacterium strain and density, and co-infiltration of an RNA silencing suppressor (p19), that affect transient expression following agroinfiltration in spinach. To evaluate the effects of these factors on the transient expression system, we used the β-glucuronidase (GUS) reporter gene construct pB7WG2D as a positive control. The vacuum-based infiltration method was much more effective at GUS gene expression than was the syringe-based infiltration method. Among the three Agrobacterium strains examined (EHA105, LBA4404, and GV2260), infiltration with the GV2260 strain suspension at a final optical cell density (OD600) of 1.0 resulted in the highest gene expression. Furthermore, co-expression of suppressor p19 also increased the efficiency and duration of gene expression and protein accumulation. The results indicate that the use of optimized conditions for transient gene expression could be a simple, rapid, and effective tool for functional genomics in spinach.  相似文献   

6.
7.
8.
Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces species.  相似文献   

9.
10.
Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.  相似文献   

11.
12.
Tea (Camellia sinensis [L.] O. Kuntze) plant, one of the most important plantation crops in the world, is infected by a fungus called Exobasidium vexans leading to dreaded blister blight disease. The disease may result in crop losses up to 35% which directly affect the tea industry. Solanum tuberosum endo-1,3-beta-d-glucanase was cloned into tea genome via Agrobacterium-mediated transformation. The transformation event initially gave 32 kanamycin-resistant plantlets, out of which PCR analysis confirmed only 10 plantlets about the integration of transgene in the plant genome. Real-time PCR study detected transgene expression in six transgenic plantlets. Upregulation of endogenous C. sinensis pathogenesis-related (PR) genes like PR3 (chitinase I) gene and PR5 (thaumatin-like protein) gene also occurred in transgenic plantlets. Detached leaf infection assay showed resistance to E. vexans in greenhouse-acclimated transgenic plantlets. An inhibitory activity against E. vexans was noticed on the detached leaves of transgenic plantlets compared to control. Transgenic plantlets showed resistance to inoculated fungal pathogen by the formation of hypersensitivity reaction area unlike the formation of fungal lesion on control plantlet. Thus, it can be inferred that constitutive expression of the potato endo-1,3-beta-d-glucanase gene can be a strategy to produce blister blight-resistant tea.  相似文献   

13.
Homogentisate prenyltransferase (HPT) is an important enzyme involved in the α-tocopherol (vitamin E) biosynthetic pathway of all plant taxa. Tocopherol biosynthesis and chlorophyll degradation are related, but more information is needed to explain their relationship. In this study, a candidate gene for HPT from Clitoria ternatea (CtHPT) was isolated and identified via a phylogeny-based approach, and its hypothetical protein sequence was analyzed. Transient expression of CtHPT with Agrobacterium-mediated infiltration into tomato leaves was then performed and observed for the metabolic relationship between the α-tocopherol biosynthesis and chlorophyll degradation by gas chromatography–mass spectrometry. In silico analysis showed that CtHPT contained a chloroplast signal peptide and nine-transmembrane α-helixes. The results showed that, the content of α-tocopherol increased in transient expression of CtHPT, with the increased pool sizes of its biosynthetic intermediates: 2-methyl-6-phythylbenzoquinol and 2,3-dimethyl-5-phythylbenzoquinol, and the increased levels of phytol and various fatty acids. Moreover, the CtHPT transient expression was observed to cause chlorophyll deficiency in the tomato leaves with simultaneous increase of phytol and fatty acids, presumably the degradative products of chlorophyll and chloroplast membranes, respectively. It was concluded that the overexpression of CtHPT may enhance the metabolic flow of the α-tocopherol biosynthetic pathway, causing the degradation of chlorophylls, thereby increasing the supply of the precursor phytol for the α-tocopherol biosynthetic pathway.  相似文献   

14.
Virus-induced gene silencing (VIGS) is known as a rapid and efficient system for studying functions of interesting genes in plants. Tobacco rattle virus (TRV) is widely applied for the gene silencing of many plants. Although spinach is a TRV-susceptible plant, a TRV-based VIGS system has not yet been developed for spinach. In this study, we established a TRV-based VIGS system for spinach. To evaluate the functionality of the TRV-based VIGS system, the phytoene desaturase gene (SoPDS) was first isolated from spinach as a marker gene. Then, the VIGS vector pTRV2 was combined with the partial fragment of SoPDS gene in sense or antisense orientation. Using the Agrobacterium infiltration method, we introduced the pTRV2-SoPDS clone to silence the SoPDS gene in spinach. SoPDS was efficiently silenced, and consequently, greater than 90% of newly emerging leaves exhibited severe chlorosis symptoms in the treated plants. Levels of chlorosis symptoms were similar in both plants infected with pTRV2 vectors harboring sense (SoPDS_S) or antisense (SoPDS_A) gene fragments. Quantitative analysis of SoPDS gene expression by qRT-PCR revealed that gene expression was reduced by greater than 90% in both SoPDS_S and SoPDS_A VIGS plants. Chlorosis on leaves was prolonged up to 4~5 wk after Agrobacterium infiltration. The TRV-based VIGS system was effective in silencing the SoPDS gene in spinach, suggesting that it can be a useful reverse genetics tool for the functional study of spinach genes.  相似文献   

15.
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass with great salinity tolerance. Based on establishment of embryogenic callus induction and regeneration from different mature seeds of ‘Sea Spray’, an Agrobacterium tumefaciens-mediated transformation was established and optimized in this study. Three clones of callus were selected for examining transformation conditions using Agrobacterium tumefaciens strain AGL1 carrying the binary vector pCAMBIA1305.2, containing β-glucuronidase (GUS) as a reporter gene and hygromycin phosphotransferase (HPT) as a selective marker gene. The results showed that a high transient transformation efficiency was observed by using Agrobacterium concentration of OD600?=?0.6, 5 min of sonication treatment during Agrobacterium infection, and 2 d of co-cultivation. By using the optimized transformation conditions, transgenic seashore paspalum plants were obtained. PCR and Southern blot analysis showed that T-DNA was integrated into the genomes of seashore paspalum. GUS staining experiments showed that the GUS gene was expressed in transgenic plants. Our results suggested that the transformation protocol will provide an effective tool for breeding of seashore paspalum in the future.  相似文献   

16.
17.

Background

Rift Valley fever virus (RVFV), the causative agent of Rift Valley fever, is an enveloped single-stranded negative-sense RNA virus in the genus Phlebovirus, family Bunyaviridae. The virus is spread by infected mosquitoes and affects ruminants and humans, causing abortion storms in pregnant ruminants, high neonatal mortality in animals, and morbidity and occasional fatalities in humans. The disease is endemic in parts of Africa and the Arabian Peninsula, but is described as emerging due to the wide range of mosquitoes that could spread the disease into non-endemic regions.There are different tests for determining whether animals are infected with or have been exposed to RVFV. The most common serological test is antibody ELISA, which detects host immunoglobulins M or G produced specifically in response to infection with RVFV. The presence of antibodies to RVFV nucleocapsid protein (N-protein) is among the best indicators of RVFV exposure in animals. This work describes an investigation of the feasibility of producing a recombinant N-protein in Nicotiana benthamiana and using it in an ELISA.

Results

The human-codon optimised RVFV N-protein was successfully expressed in N. benthamiana via Agrobacterium-mediated infiltration of leaves. The recombinant protein was detected as monomers and dimers with maximum protein yields calculated to be 500–558?mg/kg of fresh plant leaves. The identity of the protein was confirmed by liquid chromatography-mass spectrometry (LC-MS) resulting in 87.35% coverage, with 264 unique peptides. Transmission electron microscopy revealed that the protein forms ring structures of ~?10?nm in diameter. Preliminary data revealed that the protein could successfully differentiate between sera of RVFV-infected sheep and from sera of those not infected with the virus.

Conclusions

To the best of our knowledge this is the first study demonstrating the successful production of RVFV N-protein as a diagnostic reagent by Agrobacterium-mediated transient heterologous expression in N. benthamiana. Preliminary testing of the antigen showed its ability to distinguish RVFV-positive animal sera from RVFV negative animal sera when used in an enzyme linked immunosorbent assay (ELISA). The cost-effective, scalable and simple production method has great potential for use in developing countries where rapid diagnosis of RVFV is necessary.
  相似文献   

18.
In vitro plant regeneration was established in Echinacea pallida, a plant that is commonly used as a folk medicine to treat the common cold, fevers, inflammation and so on. Conditions for callus induction, lateral root and shoot regeneration were determined. Subsequently, two vectors pCHS and pOSAG78, carrying different selection marker genes resistant to kanamycin and hygromycin, respectively, were independently used to transform leaf explants of E. pallida using an Agrobacterium-mediated method. Genomic PCR analysis confirmed the presence of the transgene and selection marker gene in obtained transgenic lines. Southern hybridization indicated that the T-DNA insertion in some transgenic E. pallida was single copy. Among them, transformants carrying Petunia chalcone synthase (CHS) were selected for further study. CHS is a key enzyme in the biosynthesis of diverse flavonoids including anthocyanin pigmentation. Here, we analyzed the roles and compared the gene expression of two clusters of CHSs, EpaCHS-A and EpaCHS-B (EpaCHS-B1 and EpaCHS-B2), isolated from E. pallida. Two of the genes, EpaCHS-A and EpaCHS-B1, were abundantly expressed in petals, whereas EpaCHS-B2 was expressed at high levels in leaves. The expression of EpaCHSs remained constant in leaves and roots of Petunia CHS transformants, while EpaCHS-B2 expression was changed in flowers of transgenic plants. The biosynthesis of caffeic acid derivatives, cichoric acid and caftaric acid, was increased in leaves and roots of CHS transformants, respectively, while the amount of echinacoside in roots of transgenic plants was decreased. This is the first report on genetic engineering of E. pallida. The information contained herein can be used as a tool for further study of the biological pathways and secondary metabolism of specific compounds from medicinal Echinacea species.  相似文献   

19.
Transposable elements (transposons) are fragments of DNA sequences which can move within host genome. Miniature inverted-repeat transposable elements (MITEs) are widespread and high-copy transposable elements in eukaryotic genomes. Tourist-like MITEs are especially abundant in plant kingdom. Earlier genome-wide analysis has shown that MITEs are widely distributed in the moso bamboo genome and preferentially inserted into gene regions. In the present study, in order to examine the potential influence of MITEs on the moso bamboo gene expressions, a highly conserved Tourist-like MITE family, which distributed near genes, was selected as research focus and named PhTst-3 (Phyllostachys edulis Tourist-like element 3). The MITEs’ insertion sites were tested in moso bamboo half-sib seedlings by real-time fluorescence quantitative PCR. Amplification polymorphisms were found in a copy of PhTst-3 (PhTst-3-55) which was located in the intron of PH01002699G0010. This inserted PhTst-3-55 had a significant impact on the gene expression revealed by the real-time fluorescence quantitative PCR. The gene expression levels were four times higher in the absence of PhTst-3-55 than those in the presence of it. This finding suggests that the PhTst-3 located in the intron is involved in the regulation of the gene. In order to examine the impact of PhTst-3-55 on the near genes, the PhTst-3-55 was inserted into a promoter analysis vector, pxk7S2D, between the two promoter sequences. The Agrobacterium-mediated transient expression showed that PhTst-3-55 insertion decreases the expression level of upstream GUS gene and downstream GFP gene. So, PhTst-3-55 can have a silencing role by bidirectionally inhibiting gene expression.  相似文献   

20.
The tomato bZIP2-encoding gene was inserted into the Nicotiana benthamiana genome using Agrobacterium-mediated transformation to characterize resistance to oxidative stress and two herbicides, glyphosate and paraquat. We produced transgenic tobacco plants using the LebZIP2 gene, which were then utilized to examine salt stress and herbicide resistance through oxidative mechanisms. Transgenic LebZIP2-overexpressing plants were examined using specific primers for selection marker genes (PCR using genomic DNA) and target genes (RT-PCR). Based on microscopic examination, we observed an increase in leaf thickness and cell number in transgenic plants. The electrolyte leakage of leaves suggested that LebZIP2-overexpressing lines were weak tolerant to NaCl stress and resistant to methyl viologen. During our analysis, transgenic lines were exposed to different herbicides. Transgenic plants showed an increased tolerance based on visual injury, as well as an increased biomass. Based on these results, the LebZIP2 gene may be involved in oxidative stress tolerance and cell development in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号