首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Callus from Opuntia streptacantha (cv. Tuna loca), Opuntia megacantha (cv. Rubí reina), and Opuntia ficus-indica (cv. Rojo vigor) were exposed to jasmonic acid (JA) and abiotic stress (drought and UV light) to improve the metabolite production. The callus growth curves, phenolic acids and flavonoids content, antioxidant activity and phenylalanine ammonia lyase (PAL) activity were analyzed under normal and stress conditions. In O. streptacantha callus, the phenolics concentration increased 1.6 to 3 times times in presence of 5% PEG or after irradiation with UV light for 240 min, respectively, while flavonoids triplicate with UV light. A significant increase in antioxidant activity was observed in calli from the three Opuntia species in media with 50 µM JA. The relationships between metabolites/PAL activity, and metabolites/antioxidant activity were analyzed using a surface response methodology. Results showed that PAL activity, induced with PEG and UV, correlated with flavonoids content in O. megacantha and O. ficus-indica calli; PAL activity was related to both flavonoids and phenolics compounds in O. ficus-indica and O. megacantha calli exposed to JA, but only to flavonoids in O. streptacantha callus. In general, the JA stimulated simultaneously the metabolic pathways for phenolics and flavonoids synthesis, while abiotic stress induced mainly flavonoids route. As the stressed Opuntia calli exhibited as high antioxidant activity as cladodes, they are a promising system for research on antioxidant biosynthesis and/or to identify new compounds with antioxidant properties.  相似文献   

2.
The study on Stevia callus has the potential to advance the knowledge of antioxidant mechanisms involved in unorganized cells response to drought stress. The effects of polyethylene glycol (PEG; 0 and 4% w/v) in combination with paclobutrazol (PBZ; 0 and 2 mg l?1) and gibberellin (GA; 0 and 2 mg l?1) were studied on Stevia rebaudiana callus. PEG treatment led to an oxidative stress, as indicated by increased H2O2 content whose accumulation was prevented with PBZ and GA treatments. All treatments of PEG, PBZ and GA increased the total antioxidant capacity, with the highest antioxidant power in PBZ and GA treatments without PEG. The activity of superoxide dismutase, catalase and ascorbate peroxidase significantly increased in PEG treatment alone or in combination with PBZ and GA. All treatments of PEG, PBZ and GA significantly increased proteins, amino acids and proline contents, with the highest increase in presence of PBZ in medium culture. In contrary to proline, the activity of pyrroline-5-carboxylate synthetase and proline dehydrogenase did not change in response to any of the treatments. Collectively, our results demonstrated that PBZ and GA increased reactive oxygen species scavenging and osmolytes in PEG-treated calli more than PEG treatment alone to alleviate negative effects of PEG on Stevia calli. These findings will enable us to design effective genetic engineering strategies in callus culture to generate some somaclonal variation that may be useful in enhancing drought resistance in Stevia.  相似文献   

3.
Eclipta alba (False daisy) is an important medicinal plant with well-known antihepatotoxic activity. However, no previous in vitro studies are available for its callus culture for increased production of antioxidant secondary metabolites. Herein, we maintained a competent protocol for callus culture of E. alba using stem and leaf explants grown on MS medium containing various concentrations of thidiazuron, 6-benzylaminopurine (BAP) either alone or in association with α-naphthalene acetic acid (NAA). Among all the applied plant growth regulators, BAP along with NAA resulted in maximal dry biomass of 18.0 and 13.8 g/l for stem and leaf explants, respectively. Furthermore, the highest production of phenolics (375.7 mg/l for stem-associated callus and 298 mg/l for leaf-associated callus) and flavonoids (62.0 and 52.3 mg/l for stem- and leaf-associated callus, respectively) were found to be present in optimized callus culture. Antioxidant activity was also elucidated for both stem and leaf derived calli. The highest antioxidant activities (~?93.5%) were witnessed for stem and leaf associated calli at set concentrations of 3.0 mg/l BAP?+?1.0 mg/l NAA and 4.0 mg/l BAP, respectively. High-performance liquid chromatography analyses revealed optimum accumulation of coumarin (1.98 mg/g DW) and wedelolactone (49.63 mg/g DW) in leaf associated callus and desmethylwedelolactone (69.96 mg/g DW), β-amyrin (0.8179 mg/g DW) and eclalbatin (0.3202 mg/g DW) in stem associated callus at optimized concentration.  相似文献   

4.
The effects of various combinations of plant growth regulators on regeneration potential from seedling-derived leaf tissues of Brassica oleracea L. var. botrytis were evaluated. Callus was induced from 2-wk-old leaf explants. The explants were incubated on Gamborg’s (MSB5) medium. The maximum frequency of callus induction (85.56%) was recorded on MSB5 medium supplemented with 9.1 μM thidiazuron (TDZ) and 0.5 μM α-naphthaleneacetic acid (NAA). Optimum shoot induction (54.44%) was obtained on MSB5 medium supplemented with 4.5 μM TDZ and 0.5 μM NAA. The maximum number of shoots per explant (5.33) was recorded on MSB5 medium with 4.5 μM TDZ and 0.5 μM NAA, whereas the maximum shoot length (4.86 cm) was recorded for shoots cultured on MSB5 medium supplemented with 4.5 μM TDZ and 5.7 μM gibberellic acid (GA3). However, optimum root induction (71.11%) occurred on half-strength Murashige and Skoog basal medium supplemented with 4.9 μM indole-3 butyric acid (IBA). Studies on the antioxidant activity of superoxide dismutase, ascorbate peroxidase, and peroxidase in seedlings, callus, regenerated shoots, and regenerated plantlets cultured on 4.5 μM TDZ and 0.5 μM NAA medium revealed the roles of these key antioxidative enzymes in callus induction and regeneration. The genetic stability of the regenerated plantlets was assessed using inter simple sequence repeat primers. The monomorphic amplification products confirmed true-to-type in vitro regenerated plants. This in vitro regeneration method can be useful in the large-scale production of genetically uniform plants, for genetic transformation, and conservation of elite germplasm of plant species.  相似文献   

5.
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.  相似文献   

6.
Phlomis armeniaca Willd. is a medicinal plant in the Lamiaceae family endemic to Turkey. The present study describes efficient plant regeneration and callus induction protocols for P. armeniaca and compares phenolic profiles, total phenol and flavonoid contents, and free radical scavenging activity of in vitro-derived tissues. Stem node explants from germinated seedlings were cultured on Murashige and Skoog medium (MS) supplemented with 75 plant growth regulator (PGR) combinations. The highest shoot number per explant, frequency of shoot proliferation, and frequency of highly proliferated, green, compact callus were obtained on MS medium containing 0.25 mg L?1 thidiazuron (TDZ) and 0.25 mg L?1 indole-3-acetic acid (IAA). The best root formation was on MS basal medium (control). Methanol extract of leaves obtained from regenerants contained higher total phenol and flavonoid contents than the callus extract. The callus extract showed stronger free radical scavenging activity than leaves with IC50 [concentration inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical] values of 4.30 ± 0.08 and 2.21 ± 0.04 mg g?1 dry weight in leaves and callus, respectively. Apigenin, caffeic acid, p-coumaric acid, luteolin, rutin hydrate, vanillic acid, ferulic acid, salicylic acid, sinapic acid, and chlorogenic acid were detected by liquid chromatography–electrospray ionization multistage tandem mass spectrometry (LC-ESI-MS/MS) analysis in in vitro-grown leaves and callus tissue. Rutin hydrate, p-coumaric acid, and vanillic acid were found at approximately tenfold higher levels in callus than in leaves. This new micropropagation protocol, the first for P. armeniaca, could be used in industrial production for new herbal tea and germplasm conservation.  相似文献   

7.
Salinity and waterlogging are two stresses which in nature often occur simultaneously. In this work, effects of combined waterlogging and salinity stresses are studied on the anatomical alteration, changes of enzymatic antioxidant system and lipid peroxidation in Mentha aquatica L. plants. Seedlings were cultured in half-strength Hoagland medium 50 days after sowing, and were treated under combination of three waterlogging levels (well drained, moderately drained and waterlogging) and NaCl (0, 50, 100, 150 mM) for 30 days. Moderately drained and waterlogging conditions induced differently aerenchyma formation in roots of M. aquatica salt-treated and untreated plants. Moreover, stele diameter and endodermis layer were also affected by salt stress and waterlogging. Salt stress significantly decreased growth, relative water content (RWC), protein level, catalase (CAT) and polyphenol oxidase (PPO) activities, and increased proline content, MDA content, H2O2 level and activities of superoxide dismutase (SOD), peroxidase (POX), and ascorbate peroxidase (APX). Waterlogging in salt-untreated plants increased significantly growth parameters, RWC, protein content, antioxidant enzyme activity, and decreased proline content, H2O2 and MDA levels. In salt-treated plant, waterlogging caused strong induction of antioxidant enzymes activities especially at severe stress condition. These results suggest M. aquatica is a waterlogging tolerant plant due to significant increase of antioxidant activity, membrane stability and growth under water stress. High antioxidant capacity under waterlogging can be a protective strategy against oxidative damage, and help to salt stress alleviation.  相似文献   

8.
Arachis pintoi is a peanut species native to Brazil, which is cultivated in many countries for animal forage, soil cover, landscaping, and recovery of degraded areas. Tissue culture studies for this species have been focused in plant production, whereas works on in vitro secondary metabolites production are scarce. The goal of the present work was to establish callus cultures from different seed explants of A. pintoi, aiming at evaluating the potential for metabolites production and antioxidant activity. Embryonic axes, leaflets, and cotyledons were cultured on solidified MS medium supplemented with picloram (PIC), 2,4-dichlorophenoxyacetic acid (2,4-D), thidiazuron (TDZ) or different combinations of 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA), under light or dark conditions. Friable calluses with a high biomass (4.3?±?0.3 g FW per callus) were obtained from embryonic leaflets cultured on medium supplemented with 17.6 µM BA plus 5.4 µM NAA, in the dark. Cotyledons and embryonic axes cultured in the presence of 4.4 µM BA combined with 10.8 µM NAA formed heterogeneous calluses with a compact base and a large friable surface. Trans-resveratrol and other stilbenes that were not found in seeds were detected in callus extracts, especially those originated from cotyledons, although these materials showed lower total phenolic contents (TPC) when compared with seeds with and without testa, as well as cotyledons. Extracts from seeds with testa and from calluses derived from cotyledons and embryonic axes showed the highest EC50 in DPPH assays. No correlation between TPC, trans-resveratrol and antioxidant activity was observed.  相似文献   

9.
An endophytic fungus (strain T1) isolated from Taxus baccata was studied for the production of metabolites with anticancer and antioxidant activities. This fungus was identified as Diaporthe sp. based on rDNA-internal transcribed spacer (ITS) sequence analysis. The crude extract showed cytotoxic activity against MCF-7 and HeLa cancer cell lines, with IC50 (concentration inhibiting 50% of growth rate) values of 1058?±?44 and 1257?±?80 μg ml?1, respectively. The scavenging activity of fungal extract increased significantly with increasing concentration [IC50 (concentration required to scavenge 50% of free radicals) 482?±?9 μg ml?1]. Ultra-high-performance liquid chromatography-quadrupole-time of flight analysis revealed the presence of three trichalasins (trichalasin E, F and H) in the crude extract of T1 which are known to have antitumour and antioxidant activities. These results suggest that Diaporthe sp. has the potential to be used for therapeutic purposes because of its antiproliferative and antioxidant potential and also for the production of cytochalasins.  相似文献   

10.
Byrsonima, especially the species Byrsonima intermedia, is an endangered Brazilian plant that has been widely used as food and for its therapeutic characteristics. However, this species faces challenges with sexual propagation, and somatic embryogenesis has emerged as a viable alternative option for propagation. Therefore, this study aimed to establish a protocol for inducing somatic embryogenesis in B. intermedia. For the induction of callus from in vitro seedling leaves, different subcultures (three subcultures, 60 days each) and concentrations of different cytokinins (BAP, TDZ, Kin and ZEA) combined with varying NAA solutions were tested. Different concentrations of NAA were also analyzed in the induction of pro-embryogenic calli. For the induction of embryogenic calli and somatic embryos, the pro-embryogenic calli were subcultured on MS medium without adding growth regulators. The somatic embryos that originated were inoculated on a maturation medium containing different concentrations of gibberellic acid (GA3). The formation of secondary embryos was also analyzed using different concentrations (0, 2.88, and 8.66 µM) of GA3 and different types of lids (Conventional lid, Biossama® commercial lid and conventional lid with membranes). The results show that for the induction of somatic embryos, the use of kinetin with NAA presented the formation of somatic embryos in the second (4.76 µM CIN?+?0.54 µM NAA) and third (5.17 µM CIN?+?10.54 µM NAA) subcultures. The use of 28.87 µM GA3 favored the formation of seedlings. The Biossama lid and 2.88 µM GA3 showed higher formation of secondary embryos.  相似文献   

11.
The importance of calcium in nickel tolerance was studied in the nickel hyperaccumulator plant Alyssum inflatum by gene transformation of CAX1, a vacuolar membrane transporter that reduces cytosolic calcium. CAX1 from Arabidopsis thaliana with a CaMV35S promoter accompanying a kanamycin resistance gene was transferred into A. inflatum using Agrobacterium tumefaciens. Transformed calli were sub-cultured three times on kanamycin-rich media and transformation was confirmed by PCR using a specific primer for CAX1. At least 10 callus lines were used as a pool of transformed material. Both transformed and untransformed calli were treated with varying concentrations of either calcium (1–15 mM) or nickel (0–500 µM) to compare their responses to those ions. Increased external calcium generally led to increased callus biomass, however, the increase was greater for untransformed callus. Further, increased external calcium led to increased callus calcium concentrations. Transformed callus was less nickel tolerant than untransformed callus: under increasing nickel concentrations callus relative growth rate was significantly less for transformed callus. Transformed callus also contained significantly less nickel than untransformed callus when exposed to the highest external nickel concentration (200 µM). We suggest that transformation with CAX1 decreased cytosolic calcium and resulted in decreased nickel tolerance. This in turn suggests that, at low cytosolic calcium concentrations, other nickel tolerance mechanisms (e.g., complexation and vacuolar sequestration) are insufficient for nickel tolerance. We propose that high cytosolic calcium is an important mechanism that results in nickel tolerance by nickel hyperaccumulator plants.  相似文献   

12.
The effect of supplementation of reduced glutathione (GSH) to cryoprotectant solution on the generation of reactive oxygen species (ROS) (e.g., H2O2, OH·, and O 2 ·? ) and antioxidants (e.g., SOD, POD, CAT, AsA, and GSH), as well as membrane lipid peroxidation (i.e., MDA content) mitigation in cryopreserving of embryogenic calli (EC) of Agapanthus praecox subsp. orientalis was investigated. The vitrification-based cryopreservation method was used in this study. The addition of GSH at a final concentration of 0.08 mM to the cryoprotectant solution has significantly improved cryotolerance of A. praecox EC. The EC post-thaw survival rate increased by 68.34 % using the cryoprotectant solution containing 0.08 mM GSH as compared to the control (GSH-free). EC treated with GSH displayed the reduction in  OH· generation activity and the contents of H2O2 and MDA, as well as enhancement in the inhibition of O 2 ·? generation and the antioxidant activity. Treatment with exogenous GSH also increased endogenous AsA and GSH contents after dehydration step. Expression of stress-responsive genes, e.g., peroxidase (POD), peroxiredoxin, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and glutathione peroxidase (GPX), was also increased during cryopreservation processes. The expression of DAD1 (Defender against apoptotic cell death) was elevated, while cell death-related protease SBT was suppressed. These results demonstrated that the addition of GSH to cryoprotectant solution affects the ROS level and could effectively improve survival of A. praecox EC through enhancing antioxidant enzyme activities and decreasing cell death.  相似文献   

13.
One of the abiotic stress factors affecting plant metabolism is ultraviolet-B (UV-B) radiation. 5-Aminolevulinic acid (ALA), a key precursor of porphyrin biosynthesis, promotes plant growth and crop yields. To investigate the alleviating effects of exogenous ALA on the damages caused by UV-B exposure, two different concentrations [10 ppm (ALA1) and 25 ppm (ALA2)] of ALA were applied to lettuce seedlings for 24 h and then they were exposed to 3.3 W m?2 UV-B. Results showed that UV-B treatment significantly decreased chlorophyll a and b (Chl a and b) concentration, enhanced the activity of antioxidant enzymes, total phenolic concentration, soluble sugar contents, expression of phenylalanine ammonia lyase (PAL) and γ-tocopherol methyltransferase (γ-TMT) genes, the concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), and the rate of superoxide radical (\({\text{O}}_{2}^{ - }\)) generation in the lettuce seedlings when compared to the control. Pre-treatment with exogenous ALA significantly enhanced UV-B stress tolerance in lettuce seedlings by decreasing the reactive oxygen species. On the other hand, ALA application caused more increases in the PAL and γ-TMT gene expression, antioxidant enzymes activities, Chl a and b concentration, total phenolic content, antioxidant capacity and the concentrations of soluble sugars. Obtained results indicated that UV-B radiation exerts an adverse effect on lettuce seedlings, and some of the negative effects of UV-B radiation can be alleviated by exogenous ALA.  相似文献   

14.
Melia azedazach, a plant for forestation, is popular in many countries. Development of triploid M. azedazach varieties will provide additional advantages, such as faster growth, higher biomass, and; therefore, increased productivity. In this study, we aimed to develop triploid M. azedarach L. by immature endosperm tissue culture. After 22 days of initiation of cultures, calli of the endosperm were visible. After 50 days cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg/l NAA and 1.0 mg/l BAP, maximum of callus induction rate from the immature endosperm with seed coat was obtained at 55.9%. The highest frequency of shoot induction from endosperm-derived callus was 98% and average of 16.7 shoots per explant on the medium supplemented with 1.5 mg/l BAP and 0.5 mg/l NAA after 42 days. A single shoot was detached from the multi-shoots and transferred to the rooting medium supplemented with 0.5 mg IBA, inducing root formation with 96.6% and with average of 5.8 roots per plantlet after 28 days. The plantlets transferred to polythene hycotrays containing soil and sand (mixture 1:1) in greenhouse showed 100% survival after transplantation. The endosperm-derived plantlets were 100% triploids as evidenced by flow cytometry analysis. Creating triploid M. azedazach plants by regenerating directly from endosperm (3n) described in this work required only 5 months whereas the traditional method of generating triploids through crossing between tetraploid (4n) and diploid (2n) plants could take up to 12 years.  相似文献   

15.
The present study reports the in vitro biological nature of the pigment produced by Staphylococcus gallinarum KX912244, isolated as the gut microflora bacterium of the insect Bombyx mori. The purified pigment was characterized as Staphyloxanthin based on bio-physical characterization techniques like Fourier transform infrared spectroscopy, high performance liquid chromatography, Proton nuclear magnetic resonance spectroscopy (1H NMR), Liquid chromatography-Mass spectroscopy and Gas chromatography-Mass spectroscopy. The Staphyloxanthin pigment presented considerable biological properties including in vitro antimicrobial activity against pathogens Staphylococcus aureus, Escherichia coli and Candida albicans; in vitro antioxidant activity by % DPPH free radical scavenging activity showing IC50 value of 54.22 µg/mL; DNA damage protection activity against reactive oxygen species and anticancer activity evaluated by cytotoxicity assay against 4 different cancer cell lines like the Dalton’s lymphoma ascites with IC50 value 6.20?±?0.02 µg/mL, Ehrlich ascites carcinoma having IC50 value 6.48?±?0.15 µg/mL, Adenocarcinomic human alveolar basal epithelial cells (A549 Lung carcinoma) bearing IC50 value 7.23?±?0.11 µg/mL and Mus mucus skin melanoma (B16F10) showing IC50 value 6.58?±?0.38 µg/mL and less cytotoxicity towards non-cancerous human fibroblast cell lines (NIH3T3) with IC50 value of 52.24 µg/mL. The present study results suggest that Staphyloxanthin acts as a potential therapeutic agent especially due to its anticancer property.  相似文献   

16.
The different physiological responses to heat stress in calli from two ecotypes of common reed (Phragmites communis Trin.) plants (dune reed (DR) and swamp reed (SR)) were studied. The relative water content, the relative growth rate, cell viability, membrane permeability (MP), H2O2 content, MDA content, proline level, and the activities of enzymes, such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and lipoxygenase (LOX) were assayed. Results showed that under heat stress, DR callus could maintain the higher relative growth rate and cell viability than SR callus, while H2O2 content, MDA content, and MP in SR callus increased more than in DR callus. The activities of antioxidant enzymes, such as SOD, CAT, POD, APX, and GR in two calli were enhanced by high temperature. However, antioxidant enzymes in DR callus showed the higher thermal stability than those in SR callus. LOX activity increased more in SR callus than in DR callus under heat stress. High temperature markedly elevated proline content in DR callus whereas had no effect on that in SR callus. Taken together, DR callus is more thermotolerant than SR callus, which might be due to the higher activity of antioxidant enzymes and proline level compared with SR callus under heat stress.  相似文献   

17.
Medicago sativa L. cv. Longzhong is a nutritious forage plant in dryland regions of the Loess Plateau with strong drought tolerance and broad adaptability. To understand the adaptation mechanism of alfalfa (M. sativa L. cv. Longzhong) to drought stress, growth, and physiological parameters including levels of chlorophyll content, osmotic adjustment, reactive oxygen species (ROS), and antioxidant enzymes and antioxidants were measured under simulated levels of drought (? 0.40, ? 0.80, ? 1.20, ? 1.60, and ? 2.00 MPa). The changes in M. sativa L. cv. Longzhong were compared with those of plants of M. sativa L. cv. Longdong control (Variety I) suited to moderate rainfall areas and M. sativa L. cv. Gannong No. 3 (Variety II) suited to irrigated areas. The results showed that root–shoot ratio, the chlorophyll (a + b) and osmolytes contents, the degree of lipid peroxidation and ROS production, and the levels of antioxidative enzymes and antioxidants increased significantly with increasing drought stress, whereas plant height, aboveground biomass, chlorophyll a/b ratio, leaf water potential (Ψ1), and relative water content (RWC) decreased in response to drought. The Longzhong variety responded early to beginning drought stress (between 0 and ? 0.4 MPa) compared with the controls. Under drought stress (between ? 0.4 and ? 2.0 MPa), the Longzhong variety had significantly higher belowground biomass, root–shoot ratio, Ψ1, RWC, catalase (CAT) activity and reduced glutathione content than those of Varieties I and II, but hydrogen peroxide and hydroxyl free radical (OH·) contents were significantly lower. Step regression analysis showed that OH·, CAT, malondialdehyde, superoxide anion-free radical (O 2 ·? ), and superoxide dismutase of Longzhong had the most marked response to drought stress. In conclusion, the stronger drought tolerance of the Longzhong variety might be due to its higher water-holding capacity, root–shoot ratio, and ability to coordinate enzymatic and non-enzymatic antioxidant systems, which coordinate the peroxidation and oxidative systems.  相似文献   

18.
Apocynum venetum L., belonging to the family Apocynaceae, is a popular medicinal plant, which is commonly used in the treatment of hypertension, neurasthenia, and hepatitis in China. In the present study, the total flavonoids (TFs) were prepared from the leaves of A. venetum, and its protective effects on carbon tetrachloride (CCl4)-induced hepatotoxicity in a cultured HepG2 cell line and in mice were investigated. Cell exposed to 0.4% CCl4 (v/v) for 6 h led to a significant decrease in cell viability, increased LDH leakage, and intracellular reactive oxygen species (ROS). CCl4 also induced cell marked apoptosis, which was accompanied by the loss of mitochondrial membrane potential (MMP). Pretreatment with TFs at concentrations of 25, 50, and 100 μg/mL effectively relieved CCl4-induced cellular damage in a dose-dependent manner. In vivo, TFs (100, 200, and 400 mg/kg BW) were administered via gavage daily for 14 days before CCl4 treatment. The high serum ALT and AST levels induced by CCl4 were dose-dependently suppressed by pretreatment of TFs (200 and 400 mg/kg BW). Histological analysis also supported the results obtained from serum assays. Furthermore, TFs could prevent CCl4-caused oxidative damage by decreasing the MDA formation and increasing antioxidant enzymes (CAT, SOD, GSH-Px) activities in liver tissues. In summary, both in vitro and in vivo data suggest that TFs, prepared from A. venetum, showed a remarkable hepatoprotective and antioxidant activity against CCl4-induced liver damage.  相似文献   

19.
Nickel (Ni) is a trace element essential for the growth and development of plants. Conversely, when in excess, Ni inhibits seed germination and reduces seedling growth. Therefore, we investigated the effect of Ni+2 (5–50 μM; supplied as nickel sulfate: NiSO4·6H2O) on the activity of enzymes involved in sugar metabolism of wheat (Triticum aestivum L.) seedlings after 96 h of exposure to the metal. Ni+2 treatment reduced root and coleoptile length of emerging wheat seedlings and the effect was more pronounced on the root length. Ni+2 (5–50 μM) treatment significantly enhanced carbohydrate content by 21–100 % over that of the control. In contrast, protein and reducing sugar contents declined by 17–43 and 22–69 %, respectively. The reduction in total protein content was confirmed by SDS-PAGE analysis. The activities of starch-metabolizing enzymes declined upon Ni+2 stress in a concentration-dependent manner. Activities of α- and β-amylases, acid and alkaline invertases, acid and alkaline phosphatases, and starch phosphorylase declined by 18–74 and 24–85 %, 42–76 and 21–73 %, 15–54 and 28–72 %, and 50–83 %, respectively, when compared to the control. The study concludes that Ni+2 impairs sugar metabolism as indicated by decline in the activity of sucrose and starch hydrolyzing enzymes. It resulted in decrease in the availability of biochemical energy and sugars required for the synthesis, leading to inhibition of radicle growth in germinating wheat seeds.  相似文献   

20.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号