首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate effects of intracavernous injection of adipose-derived stem cells (ADSCs) on cavernous nerve (CN) regeneration and functional status in a nerve-crush rat model. Thirty Sprague–Dawley male rats were randomly divided into three equal groups: one group underwent sham operation, while two groups underwent bilateral CN crush. Crush-injury group was treated at the time of injury with intracavernous injection of ADSCs, or injured control group with no further intervention. Erectile function was assessed by CN electrostimulation after 3 months. Penile tissue and crushed nerves were collected for histology. Three months after surgery, in the group that underwent bilateral nerve crushing with no further intervention, the functional evaluation showed a lower mean maximal intracavernous pressure (ICP) and maximal ICP per mean arterial pressure (MAP) with CN stimulation than those in the sham group. In the group with an immediate intracavernous injection of ADSCs, the mean maximal ICP and maximal ICP/MAP were significantly higher than those in the injured control group. Histologically, the group with the intracavernous injection of ADSCs had more myelinated axons of CNs and more NADPH-diaphorase-positive nerve fibers than the injured control group but fewer than the sham group. Intracavernous injection of ADSCs treatment had beneficial effects on the smooth muscle/collagen ratio in the corpus cavernosum. These results show that the intracavernous injection of ADSCs to the site of CN-crush injury facilitates nerve regeneration and recovery of erectile function. Our research indicates that penile injection of ADSCs can improve recovery of erectile function in a rat model of neurogenic ED.  相似文献   

2.
Endothelial-derived relaxing factor (EDRF) is secreted by different endothelia in vivo. It is synthesised by endothelial NO-synthase (eNOS). Despite numerous works, its identity is not fully understood. Here the production of NA, a nitroso-arginine, which was shown to be synthesised by brain NO-synthase (bNOS), was studied in eNOS preparations. NA was quantified by reductive differential pulse voltammetry (RDPV) during its irreversible electrochemical transformation to N-hydroxy-arginine (NHA). Using microelectrodes, NA and nitrite were simultaneously measured in pure recombinant eNOS giving similar enzyme activity. NA was detected at the surface of human endothelial cells (HUVEC) and disappeared when D-arginine was introduced in the culture medium. NA production by endothelium tissue was studied in rat corpus cavernosum using voltammetric microelectrodes. NA concentration at the endothelium surface was linked to vasodilatation measured by laser Doppler induced by acetylcholine injection. LNMA ic injection induced NA disappearance. These preliminary new experiments suggested that NA could be the endogenous nitroso-compound presented early as EDRF.  相似文献   

3.
Erectile dysfunction (ED) is a major health issue among men with diabetes, and ED induced by diabetes mellitus (DMED) is particularly difficult to treat. Therefore, novel therapeutic approaches for the treatment of DMED are urgently needed. Exosomes, nanosized particles involved in many physiological and pathological processes, may become a promising tool for DMED treatment. In this study, we investigated the therapeutic effect of exosomes derived from corpus cavernosum smooth muscle cells (CCSMC‐EXOs) on erectile function in a rat model of diabetes and compared their effect with that of exosomes derived from mesenchymal stem cells (MSC‐EXOs). We incubated labelled CCSMC‐EXOs and MSC‐EXOs with CCSMCs and then observed uptake of the exosomes at different time points using laser confocal microscopy. CCSMC‐EXOs were more easily taken up by CCSMCs. The peak concentration and retention time of labelled CCSMC‐EXOs and MSC‐EXOs in the corpus cavernosum of DMED rats after intracavernous injection were compared by in vivo imaging techniques. Intracavernous injection of CCSMC‐EXOs was associated with a relatively high peak concentration and long retention time. Our data showed that CCSMC‐EXOs could improve erectile function in DMED rats. Meanwhile, CCSMC‐EXOs could exert antifibrotic effects by increasing the smooth muscle content and reducing collagen deposition. CCSMC‐EXOs also increased the expression of eNOS and nNOS, followed by increased levels of NO and cGMP. These findings initially identify the possible role of CCSMC‐EXOs in ameliorating DMED through inhibiting corporal fibrosis and modulating the NO/cGMP signalling pathway, providing a theoretical basis for a breakthrough in the treatment of DMED.  相似文献   

4.
Penile arterial insufficiency is one of the most common causes of ED. We have established a traumatic arteriogenic insufficiency rat model by the ligation of the pudendal arteries. To simulate both acute and chronic traumatic injuries, five ligation periods (6 h, 3 days, 7 days, 3 weeks, and 6 weeks) were chosen. By electrostimulation of the cavernous nerve, the intracavernous pressure was determined to be between 20 and 40-cm H(2)O for the ligated rats compared to around 100-cm H(2)O for the control rats. The erectile tissue in the corpus cavernosum of these rats was then subjected to microarray analysis, in which an array that contains cDNA fragments representing 1176 rat genes was used. The results demonstrated that normal rat corpus cavernosum expressed approximately 200 genes at detectable levels and that ligation produced differential expression of approximately 25 genes, depending on the duration of ligation. The most highly ligation-induced gene was apolipoprotein D (ApoD), with peak expression in the 3- and 7-day ligated rats. Three of the insulin-like growth factor binding proteins (IGFBP-1, 3, and 5) were upregulated in all ligated rats. IGFBP-6, which was one of the most highly expressed genes in the normal corpus cavernosum, was down-regulated in all ligated rats. Cysteine proteases of the cathepsin family were also differentially expressed between control and ligated rats, with cathepsin K being down-regulated most. A few genes were upregulated only in the 6-week ligated rats, including angiotensin-converting enzyme. Finally, VEGF, whose induction has been identified in many other ischemic tissues, was not induced in corpus cavernous tissue of ligated rats.  相似文献   

5.
A compact automated analyser which could analyse constituents in biological fluids with a small sample volume and in a short time has been developed. The instrument was composed of a flow injection analysis system equipped with chemiluminometric detection and an immobilized enzyme column reactor used in combination. Chemiluminescence has high sensitivity, and its reaction proceeds very quickly. Furthermore, an immobilized enzyme column reactor can produce a sufficient amount of hydrogen peroxide from compounds in serum in a short time. When enzymes are used as reagents for the analysis of substances in blood or blood serum, the final signals emitted by different enzyme reactions are usually not only hydrogen peroxide but also ammonia, NAD(P)H and so on. However, the practical chemiluminescence method for ammonia and NAD(P)H has not been established. We have discovered a new practical method for ammonia and NAD(P)H using an enzyme column reactor consisting of both immobilized L -glutamate dehydrogenase and L -glutamate oxidase. The determinations of glucose and uric acid in serum by chemiluminometry after production of hydrogen peroxide by the respective oxidases are presented. A newly chemiluminometric determination of ammonia, NAD(P)H and its applications to other enzymatic analyses that give ammonia and NAD(P)H as a final signal are also described.  相似文献   

6.
Radish plasmalemma-enriched fractions show an NAD(P)H-ferricyanide or NAD(P)H-cytochrome c oxidoreductase activity which is not influenced by pH in the 4.5-7.5 range. In addition, at pH 4.5-5.0, NAD(P)H elicits an oxygen consumption (NAD(P)H oxidation) inhibited by catalase or superoxide dismutase (SOD), added either before or after NAD(P)H addition. Ferrous ions stimulate NAD(P)H oxidation, which is again inhibited by SOD and catalase. Hydrogen peroxide does not stimulate NADH oxidation, while it does stimulate Fe2+-induced NADH oxidation. NADH oxidation is unaffected by salicylhydroxamic acid and Mn2+, is stimulated by ferulic acid, and inhibited by KCN, EDTA and ascorbic acid. Moreover, NADH induces the conversion of epinephrine to adrenochrome, indicating that anion superoxide is formed during its oxidation. These results provide evidence that radish plasma membranes contain an NAD(P)H-ferricyanide or cytochrome c oxidoreductase and an NAD(P)H oxidase, active only at pH 4.5-5.0, able to induce the formation of anion superoxide, that is then converted to hydrogen peroxide. Ferrous ions, sparking a Fenton reaction, would stimulate NAD(P)H oxidation.  相似文献   

7.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of -173 mV at 23 degrees C (-193 mV at 80 degrees C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80 degrees C) and low (23 degrees C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

8.
9.
Soluble methane monooxygenase (sMMO) is a three-component enzyme that catalyses dioxygen- and NAD(P)H-dependent oxygenation of methane and numerous other substrates. Oxygenation occurs at the binuclear iron active centre in the hydroxylase component (MMOH), to which electrons are passed from NAD(P)H via the reductase component (MMOR), along a pathway that is facilitated and controlled by the third component, protein B (MMOB). We previously demonstrated that electrons could be passed to MMOH from a hexapeptide-modified gold electrode and thus cyclic voltammetry could be used to measure the redox potentials of the MMOH active site. Here we have shown that the reduction current is enhanced by the presence of catalase or if the reaction is performed in a flow-cell, probably because oxygen is reduced to hydrogen peroxide, by MMOH at the electrode surface and the hydrogen peroxide then inactivates the enzyme unless removed by catalase or a continuous flow of solution. Hydrogen peroxide production appears to be inhibited by MMOB, suggesting that MMOB is controlling the flow of electrons to MMOH as it does in the presence of MMOR and NAD(P)H. Most importantly, in the presence of MMOB and catalase, the electrode-associated MMOH oxygenates acetonitrile to cyanoaldehyde and methane to methanol. Thus the electochemically driven sMMO showed the same catalytic activity and regulation by MMOB as the natural NAD(P)H-driven reaction and may have the potential for development into an economic, NAD(P)H-independent oxygenation catalyst. The significance of the production of hydrogen peroxide, which is not usually observed with the NAD(P)H-driven system, is also discussed.  相似文献   

10.
A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of −173 mV at 23°C (−193 mV at 80°C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80°C) and low (23°C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.  相似文献   

11.
After pelvic surgeries such as radical prostatectomy, two major complications--urinary incontinence and erectile dysfunction (ED) may occur. Etiologies for ED are multiple pathologic mediators/systems. Oxidative stress, which is known to be induced after surgical trauma, could be a cause of ED. The purposes of in this study are to investigate the effect of unilateral manipulation/ dissection and resection of the cavernous nerve (neurotomy) to NOS (nitric oxide synthase)-containing nerve fibers and pressure after electro stimulation in rat corpus cavernosum, and to determine whether these procedures would produce oxidative stress within rat cavernous tissue 3 weeks and 6 months after the operation. Male rats were divided into 5 groups. Rats in groups 1 and 2 underwent unilateral cavernous nerve manipulation and sacrificed 3 weeks and 6 months after the operation, respectively. Rats in groups 3 and 4 underwent unilateral neurotomy of a 5-mm. segment of the cavernous nerve, and they were sacrificed 3 weeks and 6 months after nerve ablation, respectively. Group 5 rats were control animals for biochemical analysis. Intracavernous pressure following electro stimulation reduced is significantly 3 weeks after unilateral resection, as compared to that of the manipulated nerve (P < 0.05), and it recovered 6 months after neurotomy. The recovery was also confirmed by NADPH (nicotinamide adenine dinucleotide phosphate) diaphorase staining in neurotomy groups. Lipid peroxidation, which is an indicater of oxidative stress, was determined by measuring thiobarbituric acid reacting substance (TBARS) levels and superoxide dismutase (SOD) activity. These markers indicated that unilateral cavernous nerve manipulation or resection produced oxidative stress within rat corpus cavernosum. Oxidative stress was more prominent 3 weeks after unilateral neurotomy (P < 0.05). Also, compared to the control animal group, oxidative stress was observed three weeks after manipulation of unilateral cavernous nerve (P < 0.05). Resection of the cavernous nerve caused more prominent oxidative stress than in the manipulation group. This study suggested, that unilateral cavernous neurotomy caused a decrease of intra cavernous pressure and NOS fibers in rat corpus cavernosum, and they recovered 6 months after neurotomy. Our data also provided evidence that neurotomy and manipulation of the cavernous nerve caused oxidative stress in rat corpus cavernosum and that oxidative stress was more prominent in the nerve resection group.  相似文献   

12.
Summary By means of a cytochemical technique, hydrogen peroxide formation was located on the endothelial cell surface (predominantly the luminal aspect) of capillaries obtained by collagenase digestion of rat thyroid. The cyanide-insensitive H2O2 formation required aerobic conditions and NAD(P)H as substrate. FAD could also stimulate the reaction, but not xanthine. The cytochemical reaction was blocked by a non-penetrating protein inhibitor. The observations are interpreted as evidence of a plasmalemma-bound H2O2-generating enzyme. The findings indicate that microvascular endothelial cells are involved in the release of activated oxygen species, which might have important pathophysiologic implications.  相似文献   

13.
Vascular NAD(P)H oxidase-derived reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) have emerged as important molecules in the pathogenesis of atherosclerosis, hypertension, and diabetic vascular complications. Additionally, myeloperoxidase (MPO), a transcytosable heme protein that is derived from leukocytes, is also believed to play important roles in the above-mentioned inflammatory vascular diseases. Previous studies have shown that MPO-induced vascular injury responses are H2O2 dependent. It is well known that MPO can use leukocyte-derived H2O2; however, it is unknown whether the vascular-bound MPO can use vascular nonleukocyte oxidase-derived H2O2 to induce vascular injury. In the present study, ANG II was used to stimulate vascular NAD(P)H oxidases and increase their H2O2 production in the vascular wall, and vascular dysfunction was used as the vascular injury parameter. We demonstrated that vascular-bound MPO has sustained activity in the vasculature. MPO could use the vascular NAD(P)H oxidase-derived H2O2 to produce hypochlorus acid (HOCl) and its chlorinating species. More importantly, MPO derived HOCl and chlorinating species amplified the H2O2-induced vascular injury by additional impairment of endothelium-dependent relaxation. HOCl-modified low-density lipoprotein protein (LDL), a specific biomarker for the MPO-HOCl-chlorinating species pathway, was expressed in LDL and MPO-bound vessels with vascular NAD(P)H oxidase-derived H2O2. MPO-vascular NAD(P)H oxidase-HOCl-chlorinating species may represent a common pathogenic pathway in vascular diseases and a new mechanism involved in exacerbation of vascular diseases under inflammatory conditions.  相似文献   

14.
Erectile dysfunction (ED) is a common ageing male's disease, and vascular ED accounts for the largest proportion of all types of ED. One of the mechanisms of vascular ED in the clinic is arterial insufficiency, which mainly caused by atherosclerosis, trauma and surgical. Moreover, oxidative stress damage after tissue ischemia usually aggravated the progress of ED. As a new way of acellular therapy, mesenchymal stem cell‐derived exosomes (MSC‐Exos) have great potential in ED treatment. In the current study, we have explored the mechanism of MSC‐Exos therapy in a rat model of internal iliac artery injury‐induced ED. Compared with intracavernous (IC) injection of phosphate‐buffered saline after artery injury, of note, we observed that both mesenchymal stem cells (MSCs) and MSC‐Exos through IC injection could improve the erectile function to varying degrees. More specifically, IC injection MSC‐Exos could promote cavernous sinus endothelial formation, reduce the organization oxidative stress damage, and improve the nitric oxide synthase and smooth muscle content in the corpus cavernosum. With similar potency compared with the stem cell therapy and other unique advantages, IC injection of MSC‐ Exos could be an effective treatment to ameliorate erectile function in a rat model of arterial injury.  相似文献   

15.
The clinical benefit of PGE1 in erectile dysfunction in men is well proven, while other species including non-human primates show almost no response. The reason for that difference is still unclear. We examined PGE1 binding in human surgical material (n=27) and from transsexual surgery (n=7) as well as rhesus (n=10) and cynomolgus monkeys (n=8) corpus cavernosum tissue. Erection was judged after intracavernous injection of PGE1 in men (10 microg) and in monkeys (5 microg). Human corpus cavernosum shows high- (binding capacity 24.7+/-3.3 pmol/mg protein) and low-affinity (binding capacity 77.4+/-7.3 pmol/mg protein) PGE1 binding sites. Oestrogen (3 mg/day) for more than one month before transsexual surgery decreases receptor density significantly. In rhesus and cynomolgus monkeys no high-affinity binding could be detected, while they respond on PGE1 with slight tumescence only. These findings indicate a significant correlation between corpus cavernosum PGE1 receptor density and the erectile response.  相似文献   

16.
A comparative investigations of heme-containing enzymes inhibitors NaN3 and NaCN effects on the rat aorta isolated segments tone has shown that NaN3 in the range of very low concentrations from 10(-9) to 10(-6) M displays pharmacological activity characteristic of nitric oxide (NO) donors, which is inhibited by NaCN. The value of vasodilatation, caused by NaN3, was also decreased in the presence of soluble guanylate cyclase inhibitor ODQ (10(-5) M). It was found that H2O2 injection to physiological solution containing NaN3 and horseradish peroxidase or catalase lead to NO2- accumulation in it, which was blocked by NaCN. The nonenzymic NaN3 oxidization by hydrogen peroxide was not found in control experiments. NaN3 physiological activity dependent on NO-donating properties of this traditional inhibitor of heme-containing enzymes is discussed.  相似文献   

17.
Jack AM  Keegan A  Cotter MA  Cameron NE 《Life sciences》2002,71(16):1863-1877
Diabetes causes endothelial dysfunction, with deleterious effects on nitric oxide (NO) mediated vasodilatation. However, in many vessels other local vasodilators such as endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, epoxides or endocannabinoids are also important. Several of these factors may be derived from omega-6 essential fatty acids via arachidonate metabolism. Diabetes inhibits this pathway, a defect that may be bypassed by diets enriched with omega-6 gamma-linolenic acid-containing oils such as evening primrose oil (EPO). The aim was to examine the effects of preventive EPO treatment on endothelium-dependent and neurally mediated vasorelaxation. Diabetes was induced by streptozotocin in rats; duration was 8 weeks. Vascular responses were examined in vitro on thoracic aorta, corpus cavernosum and perfused mesenteric bed preparations. Diabetes caused 25% and 35% deficits, respectively, in aorta and corpus cavernosum NO-mediated endothelium-dependent relaxation to acetylcholine that were largely unaffected by EPO treatment. Moreover, a 44% reduction in maximum corpus cavernosum vasorelaxation to nitrergic nerve stimulation was not prevented by EPO. However, for the mesenteric vascular bed, a 29% diminution of responses to acetylcholine, mediated by both NO and EDHF, was 84% attenuated by EPO treatment. When the EDHF component was isolated during NO synthase inhibition, a 76% diabetic deficit was noted. This was completely prevented by EPO treatment, which also caused supernormal EDHF responses in nondiabetic rats. EPO treatment prevented the development of deficits in endothelium-dependent relaxation in diabetic rats. Effects were particularly marked on the resistance vessel EDHF system, which may have potential therapeutic relevance for diabetic microvascular complications.  相似文献   

18.
We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(-)) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H(2)O(2)), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H(2)O(2) scavenger altered flow-induced dilation, whereas both H(2)O(2) scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H(2)O(2) and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.  相似文献   

19.
Stimulation of the rates of NAD(P)H oxidation, superoxide generation, and hydrogen peroxide formation by three anthracenedione antineoplastic agents in the presence of NADPH-cytochrome P-450 reductase, NADH dehydrogenase, or rabbit hepatic microsomes was studied and the results compared with those obtained for the anthracyclines Adriamycin and daunorubicin. In all cases the anthracenediones, including mitoxantrone and ametantrone, were significantly (5- to 20-fold) less effective than the anthracyclines in stimulating NAD(P)H oxidation, superoxide formation, or hydrogen peroxide production. Of the three anthracenediones studied, the ring-monohydroxylated compound showed the greatest activity followed by the ring-dihydroxylated derivative (mitoxantrone). In contrast, the non-ring-hydroxylated anthracenedione (ametantrone) was a relatively ineffective electron acceptor and inhibited the reduction of more effective acceptors such as Adriamycin. Michaelis-Menten kinetic constants were determined by analysis of the rates of NADPH oxidation. NADP+ and 2'-AMP inhibited the reduction of the ring-hydroxylated anthracenediones and anthracyclines, demonstrating the enzymatic nature of the reaction. The non-ring-hydroxylated anthracenedione inhibited the reduction of Adriamycin by both P-450 reductase and NADH dehydrogenase with 50% inhibition achieved at approximately 300 microM. Thus, there appears to exist a structural relationship between anthracenedione ring hydroxylation and metabolic activation. These results also suggest that the relative inability of the anthracenediones to function as artificial electron acceptors in comparison to the anthracyclines may be correlated with diminished anthracenedione cardiotoxicity.  相似文献   

20.
Epidemiological studies suggest that Mediterranean diets rich in resveratrol are associated with reduced risk of coronary artery disease. However, the mechanisms by which resveratrol exerts its cardioprotective effects are not completely understood. Because TNF-alpha-induced endothelial activation and vascular inflammation play a critical role in vascular aging and atherogenesis, we evaluated whether resveratrol inhibits TNF-alpha-induced signal transduction in human coronary arterial endothelial cells (HCAECs). We found that TNF-alpha significantly increased adhesiveness of the monocytic THP-1 cells to HCAECs, an effect that could be inhibited by pretreatment with resveratrol and the NF-kappaB inhibitor pyrrolidine dithiocarbamate. Previously, we found that TNF-alpha activates NAD(P)H oxidases, and our recent data showed that TNF-alpha-induced endothelial activation was prevented by the NAD(P)H oxidase inhibitor apocynin or catalase plus SOD. Resveratrol also inhibited H(2)O(2)-induced monocyte adhesiveness. Using a reporter gene assay, we found that, in HCAECs, TNF-alpha significantly increased NF-kappaB activity, which could be inhibited by resveratrol (>50% inhibition at 10(-6) mol/l) and pyrrolidine dithiocarbamate. Resveratrol also inhibited TNF-alpha-induced, NF-kappaB-driven luciferase expression in rat aortas electroporated with the reporter gene construct. In TNF-alpha-treated HCAECs, resveratrol (in the submicromolar range) significantly attenuated expression of NF-kappaB-dependent inflammatory markers inducible nitric oxide synthase, IL-6, bone morphogenetic protein-2, ICAM-1, and VCAM. Thus resveratrol at nutritionally relevant concentrations inhibits TNF-alpha-induced NF-kappaB activation and inflammatory gene expression and attenuates monocyte adhesiveness to HCAECs. We propose that these anti-inflammatory actions of resveratrol are responsible, at least in part, for its cardioprotective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号