共查询到20条相似文献,搜索用时 15 毫秒
1.
H. C. WANG H. SUN J. A. COMPTON J. B. YANG 《Botanical journal of the Linnean Society. Linnean Society of London》2006,151(3):365-373
Based on nuclear ribosomal DNA internal transcribed spacer (ITS) sequences, Thermopsideae is phylogenetically studied within a genistoid background. Analysis reveals that the tribe is not supported as a monophyletic group. Some species of Sophora s.s are nested within it. The central Asian desert Ammopiptanthus forms an isolated clade but is relatively remote to other Thermopsideae members. Piptanthus , Anagyris , Baptisia , and Thermopsis are clustered together into a robust clade. We hence propose that the tribe could either be reduced to just the four 'core genera' with Ammopiptanthus excluded, or, as an alternative, that Thermopsideae could become part of a new Sophoreae s.s. if it is re-circumscribed in the future. Both Piptanthus and Baptisia appear as monophyletic. The genus Anagyris is closer to some east Asian Thermopsis species than to Piptanthus . The east Asian and North American disjunct Thermopsis is not monophyletic. The ITS results suggest a geographical division between the Old World and New World Thermopsis . The east Asian species are clustered with Piptanthus and Anagyris , whereas the North American species are allied to Baptisia . Nonetheless, the only two north-eastern east Asian native Thermopsis species appear to be more related to the North American group than to the east Asian one. The related biogeographical significance has therefore been additionally discussed. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 365–373. 相似文献
2.
3.
The phylogeny of Ptychostomum was first spacer (ITS) region of the nuclear ribosomal (nr) DNA DNA rps4 sequences. Maximum parsimony, maximum undertaken based on analysis of the internal transcribed and by combining data from nrDNA ITS and chloroplast likelihood, and Bayesian analyses all support the conclusion that the reinstated genus Ptychostomum is not monophyletic. Ptychostomum funkii (Schwagr.) J. R. Spence (≡ Bryum funkii Schwaigr.) is placed within a clade containing the type species of Bryum, B. argenteum Hedw. The remaining members of Ptychostomum investigated in the present study constitute another well-supported clade. The results are congruent with previous molecular analyses. On the basis of phylogenetic evidence, we agree with transferring B. amblyodon Mull. Hal. (≡ B. inclinatum (Brid.) Turton≡ Bryum archangelicum Bruch & Schimp.), Bryum lonchocaulon Mull. Hal., Bryum pallescens Schleich. ex Schwaigr., and Bryum pallens Sw. to Ptychostomum. 相似文献
4.
The evolutionary relationships among members of Apiaceae (Umbelliferae) tribe Scandiceae and representatives of all major lineages of Apioideae (including putatively allied Caucalideae) identified in earlier molecular studies were inferred from nucleotide sequence variation in the internal transcribed spacer regions (ITS1 and ITS2) of nuclear ribosomal DNA. In all, 134 accessions representing 18 genera commonly treated in Scandiceae were analyzed. Phylogenies estimated using maximum parsimony and distance methods were generally similar and suggest that: (1) Scandiceae form a well-supported clade, consisting of the genera Anthriscus, Athamanta (in part), Balansaea, Chaerophyllum, Conopodium, Geocaryum, Kozlovia, Krasnovia, Myrrhis, Myrrhoides, Neoconopodium, Osmorhiza, Scandix, Sphallerocarpus, and Tinguarra; (2) Athamanta is polyphyletic, with A. della-cellae allied with Daucus and A. macedonica placed close to Pimpinella; and (3) Rhabdosciadium and Grammosciadium find affinity with the Aegopodium group of umbellifers, whereas the placement of the monotypic Molopospermum cannot be inferred because of its high sequence divergence. The genus Bubon has been restored with two new combinations, B. macedonicum subsp. albanicum and B. macedonicum subsp. arachnoideum. Scandiceae arise within paraphyletic Caucalideae, the latter comprising two major lineages whose relationships to Scandiceae are not clear. Therefore, a broad treatment of Scandiceae is proposed, with subtribes Scandicinae, Daucinae, and Torilidinae (the latter two representing the Daucus and Torilis subgroups, respectively, of recent molecular systematic investigations). 相似文献
5.
Phylogenetic relationships among 40 New World and Old World members of Apiaceae subfamily Apioideae, representing seven of the eight tribes and eight of the ten subtribes commonly recognized in the subfamily, were inferred from nucleotide sequence variation in the internal transcribed spacer (ITS) regions of 18-26S nuclear ribosomal DNA. Although the sequences are alignable, with only 11% of sites excluded from the analyses because of alignment ambiguity, divergence values in pairwise comparisons of unambiguous positions among all taxa were high and ranged from 0.5 to 33.2% of nucleotides in ITS 1 and from 0 to 33.2% of nucleotides in ITS 2. Average sequence divergence across both spacer regions was 18.4% of nucleotides. Phylogenies derived from ITS sequences estimated using neighbor-joining analysis of substitution rates, and maximum likelihood and parsimony methods give trees of essentially similar topology and indicate that: (1) there is little support for any existing system of classification of the subfamily that is based largely on morphological and anatomical features of the mericarp; (2) there is a major phylogenetic division within the subfamily, with one clade comprising the genus Smyrnium and those taxa belonging to Drude's tribes Dauceae, Scandiceae, and Laserpitieae and the other clade comprising all other examined taxa; and (3) the genera Arracacia, Coaxana, Coulterophytum, Enantiophylla, Myrrhidendron, Prionosciadium, and Rhodosciadium, all endemic to Mexico and Central America, comprise a clade but their relationships to other New World taxa are equivocal. A phylogeny derived from parsimony analysis of chloroplast DNA rpoC1 intron sequences is consistent with, but considerably less resolved than, relationships derived from these ITS regions. This study affirms that ITS sequences are useful for phylogenetic inference among closely related members of Apioideae but, owing to high rates of nucleotide substitution, are less useful in resolving relationships among the more ancestral nodes of the phylogeny. 相似文献
6.
M. Ajmal Ali 《Saudi Journal of Biological Sciences》2018,25(7):1298-1301
The deciduous habit and tendency to produce flowers prior to developing leaves, and a predominantly dioecious system of breeding in the genus Commiphora leads to difficulties in its taxonomic identification at species level. The characteristics of easy amplification by universal primer, shorter length and higher discrimination power at the species level makes the internal transcribed spacer (ITS) sequence of nuclear ribosomal DNA (nrDNA) to a smart gene for generating species-specific phylogenetic inferences in most of the plants groups. The present study deals the ITS sequence of nrDNA based molecular genotyping of seven species of the genus Commiphora of Saudi Arabia. The molecular phylogenetic analysis of ITS sequences of nrDNA of Commiphora species distributed in Saudi Arabia reveals the the occurrence of C. madagascariens in Saudi Arabia. 相似文献
7.
The internal transcribed spacer (ITS) region of the 18 S–25 S nuclear ribosomal DNA repeat was sequenced from 19 populations of the tribeLactuceae, including all species of dwarf dandelion (Krigia) and five outgroup genera. The incidence of length changes and base substitutions was at least two times higher for ITS 1 than ITS 2. Interspecific sequence divergence withinKrigia averaged 9.62% (1.61%–15.19%) and 4.26% (0%–6.64%) in ITS 1 and ITS 2, respectively. Intergeneric sequence divergence ranged from 15.6% to 44.5% in ITS 1 and from 8.0% to 28.6% in ITS 2. High sequence divergence and homoplasy among genera of tribeLactuceae suggest that the phylogenetic utility of ITS sequence data is limited to interspecific studies or comparisons among closely related genera. Trees generated from ITS sequences are essentially identical to those from restriction site comparisons of the entire nuclear ribosomal (nr) DNA region. The degree of tree resolution differed depending on how gaps were treated in phylogenetic analyses. The ITS trees were congruent with the chloroplast DNA and morphological phylogenies in three major ways: 1) the sister group relationship betweenKrigia andPyrrhopappus; 2) the recognition of two monophyletic sections,Krigia andCymbia, in genusKrigia; and 3) the monophyly of theK. occidentalis-K. cespitosa clade in sect.Cymbia. However, the two nrDNA-based trees are not congruent with morphology/chloroplast DNA-based trees for the interspecific relationships in sect.Krigia. An average of 22.5% incongruence was observed among fourKrigia data sets. The relatively high degree of incongruence among data sets is due primarily to conflict between trees based on nrDNA and morphological/cpDNA data. The incongruence is probably due to the concerted evolution of nrDNA repeating units. The results fromKrigia and theLactuceae suggest that nrDNA data may have limited utility in phylogenetic studies of plants, especially in groups which exhibit high levels of sequence divergence. Our combined phylogenetic analysis as a total evidence shows the least conflict to each of the individual data sets. 相似文献
8.
The internal transcribed spacers (ITSs) of nuclear ribosomal DNA have been sequenced for 20 species of Gentiana. By incorporating previously released sequence data of eight species, phylogenelic analyses using Fitch parsimony and character-state weighted parsimony were carried out. The length of ITS 1 in the taxa surveyed ranged from 223 to 238 bp and ITS2 from 216 to 234 bp. Sequence divergence between pairs of species ranged from 5.0% to 48.9% in ITS1, from 1.1% to 45.3% in ITS2, and from 3.2% to 46.1% in combined data of ITS1 and ITS2. The ITS phylogeny was generally congruent with morphological classifications except that G. asclepiadea was revealed to be closely related to section Gentiana instead of section Pneumonanthe and section Stenogyne was shown to be a paraphyletic group of the genus Gentiana that would be better excluded from the genus. A divergence among the three European endemic sections and the remaining sections of the genus other than section Stenogyne was revealed. Thus the European species of the genus together do not form a monophyletic group. A close relationship between the sections Chondrophyllae s. l. (including section Dolichocarpa), Cruciata and Pneumonanthe was suggested. The section Frigidae s. l. (including sections Monopodiae, Isomeria, Microsperma, and Phyllocalyx) contained two well-supported clades: section Frigidae s. str. and all others together. The monophyly of the typically dysploid group section Chondrophyllae s. l. was confirmed. Optimization of chromosome numbers on the ITS phylogeny suggested that 2/1 = 26 is a plesiomorphic state for the clade comprising sections Frigidae s. l., Cruciata, Pneumonanthe, and Chondrophyllae s. l., and probably 2n = 20 is a plesiomorphic state for the dysploid group, section Chondrophyllae s. l. 相似文献
9.
Phylogeny of Rubus (rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences 总被引:3,自引:0,他引:3
We used nuclear ribosomal DNA internal transcribed spacer region (ITS 1 - 5.8S - ITS 2; ITS) sequences to generate the first phylogeny of Rubus based on a large, molecular data set. We sampled 57 taxa including 20 species of subgenus Rubus (blackberries), one to seven species from each of the remaining 11 subgenera, and the monotypic and closely related Dalibarda. In Rubus, ITS sequences are most informative among subgenera, and variability is low between closely related species. Parsimony analysis indicates that Rubus plus Dalibarda form a strongly supported clade, and D. repens may nest within Rubus. Of the subgenera with more than one species sampled, only subgenus Orobatus appears monophyletic. Three large clades are strongly supported: one contains all sampled species of nine of the 12 subgenera; another includes extreme Southern Hemisphere species of subgenera Comaropsis, Dalibarda, and Lampobatus; and a third clade consists of subgenus Rubus plus R. alpinus of subgenus Lampobatus. Rubus ursinus appears to be a hybrid between a close relative of R. macraei (subgenus Idaeobatus, raspberries) and an unidentified subgenus Rubus species. ITS sequences are generally consistent with biogeography and ploidy, but traditionally important morphological characters, such as stem armature and leaf type, appear to have limited phylogenetic value in Rubus. 相似文献
10.
11.
Yoshio Ogawa Atsuhiro Suda Kuniko Kusama-Eguchi Kazuko Watanabe Seiji Tokumasu 《Mycoscience》2005,46(6):343-351
Umbelopsis ramanniana is a well-known species in this genus. A characteristic morphological feature of this fungus is the remarkable variation
in the sporangiospore shape, which implies the genetic variations occur in the nucleotide sequences of the internal transcribed
spacer (ITS) regions of the nuclear ribosomal DNA (nrDNA) in the U. ramanniana isolates. The relationship between the variations of the sequences of the nrDNA ITS regions and those of the sporangiospore
morphology was investigated for 12 isolates of U. ramanniana collected in Europe. Neighbor-joining and parsimony analyses on the sequences suggested that these isolates split into three
groups. Precise examination of the morphology showed that the isolates of those respective groups were different from each
other in their sporangiospore shape. The present study implies at least three intraspecific groups exist in U. ramanniana and that the variations in the nucleotide sequences of the nrDNA ITS regions correlate well with those in the sporangiospore
shape in these intraspecific groups. 相似文献
12.
Gomulski LM Meiswinkel R Delécolle JC Goffredo M Gasperi G 《Medical and veterinary entomology》2006,20(2):229-238
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) include vectors for the economically important animal diseases, bluetongue (BT) and African horse sickness (AHS). In the Mediterranean Basin, these diseases are transmitted by four species of Culicoides: the first three belong in the subgenus Avaritia Fox and are Culicoides imicola Kieffer, Culicoides obsoletus (Meigen) and Culicoides scoticus Downes and Kettle; the fourth is Culicoides pulicaris (Linnaeus) in the subgenus Culicoides Latreille. In the Palaearctic Region, this subgenus (usually referred to as the C. pulicaris group) now includes a loose miscellany of some 50 taxa. The lack of clarity surrounding its taxonomy stimulated the present morphological and molecular study of 11 species collected in Italy. Phylogenetic analysis of nuclear ribosomal DNA internal transcribed spacer 2 (ITS2) sequence variation demonstrated a high degree of divergence. These results, combined with those from a parallel morphological study, disclosed: (1) that some previously described taxa should be resurrected from synonymy; (2) that there are new species to be described; (3) that the subgenus Culicoides (as currently employed) is a polyphyletic assemblage of four lineages - the subgenus Culicoides sensu stricto, the subgenus Silvicola Mirzaeva and Isaev, the subgenus Hoffmania Fox and the hitherto unrecognized Fagineus species complex. Each is discussed briefly (but not defined) and its constituent Palaearctic taxa listed. Strong congruence between morphological and molecular data holds promise for resolving many of the difficult taxonomic issues plaguing the accurate identification of vector Culicoides around the world. 相似文献
13.
J. Vander Stappen J. De Laet S. Gama-López S. Van Campenhout G. Volckaert 《Plant Systematics and Evolution》2002,234(1-4):27-51
Phylogenetic relationships in Stylosanthes are inferred by DNA sequence analysis of the ITS region (ITS1–5.8S–ITS2) of the nuclear ribosomal DNA in 119 specimens, representing
36 species of Stylosanthes and 7 species of the outgroup genera Arachis and Chapmannia. In all examined specimens of any particular diploid and (allo)polyploid species, only a single ITS sequence type was observed.
This allowed us to identify a parental genome donor for some of the polyploids. In several diploid and polyploid species,
different specimens contained a different ITS sequence. Some of these sequence types were present in more than one species.
Parsimony analysis yielded several well-supported clades that agree largely with analyses of the chloroplast trnL intron and partially with the current sectional classification. Discordances between the nuclear and cpDNA analyses are
explained by a process of allopolyploidization with inheritance of the cpDNA of one parent and fixation of the ITS sequences
of the other. S. viscosa has been an important genome donor in this process of speciation by allopolyploidy.
Received August 14, 2001; accepted March 4, 2002 Published online: November 14, 2002
Addresses of the authors: Jacqueline Vander Stappen, Steven Van Campenhout and Guido Volckaert (E-mail: guido.volckaert@agr.kuleuven.ac.be),
Katholieke Universiteit Leuven, Laboratory of Gene Technology, Kasteelpark Arenberg 21, B-3001 Leuven, Belgium. Jan De Laet,
American Museum of Natural History, Division of Invertebrate Zoology, Central Park West at 79th Street, New York 10024–5192,
USA. Susana Gama-López, Universidad Nacional Autónoma de México, Unidad de Biología, Tecnología y Protipos (UBIPRO), FES-Iztacala,
Laboratorio de Recursos Naturales, Av. de Los Barrios S/N, Colonia Los Reyes Iztacala, Municipio Tlalnepantla, Estado de México,
C.P. 54090, México. Present address: Apartado Postal 154, Cto. Parque No. 3, C.P. 53102, México. 相似文献
14.
Phylogenetic relationships of eight species of Saintpaulia H. Wendl., 19 species of Streptocarpus Lindl. (representing all major growth forms within the genus), and two outgroups (Haberlea rhodopensis Friv., Chirita spadiciformis W. T. Wang) were examined using comparative nucleotide sequences from the two internal transcribed spacers (ITS) of nuclear ribosomal DNA. The length of the ITS 1 region ranged from 228 to 249 base pairs (bp) and the ITS 2 region from 196 to 245 bp. Pairwise sequence divergence across both spacers for ingroup and outgroup species ranged from 0 to 29%. Streptocarpus is not monophyletic, and Saintpaulia is nested within Streptocarpus subgenus Streptocarpella. Streptocarpus subgenus Streptocarpus is monophyletic. The ITS sequence data demonstrate that the unifoliate Streptocarpus species form a clade, and are also characterized by a unique 47-bp deletion in ITS 2. The results strongly support the monophyly of (1) Saintpaulia, and (2) Saintpaulia plus the African members of the subgenus Streptocarpella of Streptocarpus. The data suggest the evolution of Saintpaulia from Streptocarpus subgenus Streptocarpella. The differences in flower and vegetative characters are probably due to ecological adaptation leading to a relatively rapid radiation of Saintpaulia. 相似文献
15.
Phylogenetic relationships of coffee-tree species (Coffea L.) as inferred from ITS sequences of nuclear ribosomal DNA 总被引:1,自引:0,他引:1
P. Lashermes M. C. Combes P. Trouslot A. Charrier 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1997,94(6-7):947-955
Phylogenetic relationships of Coffea species were estimated from the sequences of the internal transcribed spacer (ITS 2) region of nuclear ribosomal DNA. The
ITS 2 region of 37 accessions belonging to 26 Coffea taxa and to three Psilanthus species was directly sequenced from polymerase chain reaction (PCR)-amplified DNA fragments. The level of variation was high
enough to make the ITS 2 a useful tool for phylogenetic reconstruction. However, an unusual level of intraspecific variation
was observed leading to some difficulty in interpreting rDNA sequence divergences. Sequences were analysed using Wagner parsimony
as well as the neighbour-joining distance method. Coffea taxa were divided into several major groups which present a strong geographical correspondence (i.e. Madagascar, East Africa,
Central Africa and West Africa). This organisation is well supported by cytogenetic evidence. On the other hand, the results
were in contradiction with the present classification of coffee-tree taxa into two genera, namely Coffea and Psilanthus. Furthermore, additivity of parental rDNA types was not observed in the allotetraploid species C. arabica.
Received: 25 July 1996 / Accepted: 18 October 1996 相似文献
16.
Internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA from 44 taxa of the genus Lupinus and five outgroup taxa were used for phylogenetic analysis. Lupinus appears as a strongly supported monophyletic genus, which is unambiguously part of the Genisteae. The lupines are distributed into five main clades in general accordance with their geographical origin. In the Old World, almost all the recognized taxonomic units are well resolved. The ITS data reveal an unexpectedly close relationship between the diverse sections Angustifoli and Lutei. The ITS results suggest a geographical division between the western New World lupines and the eastern ones. They also indicate the presence of some moderately to strongly supported groups of taxa, such as the Microcarpi-Pusilli group, the L. spariflorus-L. arizonicus group, the L. mexicanus-L. elegans group in the western New World, and the notable L. multiflorus-L. paraguariensis group in the eastern New World. The latter group strongly suggests that the eastern South American compound- and simple-leaved perennial lupines derive from a common ancestor. However, apart from some exceptions, relationships within the genus still remain largely unresolved based on ITS data. The lack of resolution at the base of the genus is suggestive of a rapid initial radiation of the lupines subsequent to the dispersal of their common ancestor. Relative rate tests demonstrate the presence of rate heterogeneity of ITS sequences within Lupinus. In many pairwise comparisons between taxa, substitution rate inequalities are correlated with the habit (annual, perennial), suggesting some role for the generation time effects in the evolutionary history of lupines. 相似文献
17.
To estimate the phylogenetic relationship of polyploid Elymus in Triticeae, nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL-F sequences of 45 Elymus accessions containing various genomes were analysed with those of five Pseudoroegneria (St), two Hordeum (H), three Agropyron (P) and two Australopyrum (W) accessions. The ITS sequences revealed a close phylogenetic relationship between the polyploid Elymus and species from the other genera. The ITS and trnL-F trees indicated considerable differentiation of the StY genome species. The trnL-F sequences revealed an especially close relationship of Pseudoroegneria to all Elymus species included. Both the ITS and trnL-F trees suggested multiple origins and recurrent hybridization of Elymus species. The results suggested that: the St, H, P, and W genomes in polyploid Elymus were donated by Pseudoroegneria, Hordeum, Agropyron and Australopyrum, respectively, and the St and Y genomes may have originated from the same ancestor; Pseudoroegneria was the maternal donor of the polyploid Elymus; and some Elymus species showed multiple origin and experienced recurrent hybridization. 相似文献
18.
A. Quijada A. Liston P. Delgado A. Vázquez-Lobo E. R. Alvarez-Buylla 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1998,96(3-4):539-544
In the genus Pinus the internal transcribed spacers (ITS1 and ITS2) and the 5.8s region of the nuclear ribosomal DNA are approximately 3000 bp in length. ITS1 is considerably longer than ITS2 and partial
sequences of ITS1 indicate that this region is evolving rapidly and exhibits intraspecific variation. The ITS2 and 5.8s regions are relatively conserved. We surveyed restriction fragment length variability of PCR-amplified fragments (PCR-RFLP)
of the ITS region in four populations (86 individuals) of Pinus rzedowskii, a pine endemic to western Michoacán, Mexico. Five of the restriction endonucleases assayed revealed variation, with a total
of 13 variants, most of which were length mutations of 300–900 bp. A moderate degree of population differentiation was detected.
The average diversity (Shannon’s index) of ITS fragment size patterns was 1.19, with 34% of the variation due to differences
among populations and 66% due to differences among individuals within populations. The same individuals were assayed for nine
polymorphic isozymes, which gave diversity measures similar to those of each restriction endonuclease.
Received: 25 August 1997 / Accepted: 19 September 1997 相似文献
19.
In the present study, we used two chloroplast DNA (cpDNA) fragments (trnL-F and rps16) and the nuclear ribosomal internal transcribed spacer (ITS) sequence data to examine intraspecific differentiation and phylogeographical history of Allium wallichii. Based on wide scale sampling (28 populations and 174 individuals) across the entire distribution range of this species, 33 cpDNA haplotypes and 25 ITS ribotypes were detected in our investigation. These cpDNA haplotypes were divided into three major lineages, which was further supported by the ITS phylogenetic results. High haplotype/ribotype diversity and population differentiation, together with most of the haplotypes/ribotypes being exclusive to single populations, implied restricted gene flow among populations and significant geographical isolation. Nearly all populations with high haplotype/ribotype diversity were found in the Hengduan Mountain Region (HMR), whereas the populations of the Himalayas and Nanling Mountains showed a lower level, suggesting the HMR might serve as a potential divergence center for A. wallichii. The main lineages of A. wallichii diverged from each other between Mid–Late Pliocene and Early Quaternary based on two sets of molecular markers, indicating that the Quaternary climatic fluctuation could not have contributed greatly to the divergence of the main lineages of A. wallichii. Instead, the intricate topography and heterogeneous habitats resulting from the drastic uplift of the Qinghai–Tibet Plateau from the Late Pliocene could be responsible for the intraspecific differentiation of A. wallichii. The present study further highlights the importance of geographic isolation and habitat heterogeneity in shaping and maintaining high species diversity within the HMR. 相似文献
20.
Weekers PH Murugan G Vanfleteren JR Belk D Dumont HJ 《Molecular phylogenetics and evolution》2002,25(3):535-544
The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Tanymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata ("Family" Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae ("Family" Linderiellidae), which has 11 pairs of trunk limbs. All appear to be part of the Chirocephalidae and share one morphological character: double pre-epipodites on at least part of their legs. That Linderiella is part of the Polyartemiinae suggests that multiplication of the number of limbs occurred once, but was lost again in Linderiella. Within Chirocephalidae, we found two further clades, the Eubranchipus-Pristicephalus clade and the Chirocephalus clade. Pristicephalus is reinstated as a genus. 相似文献