首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The technical developments and expanded indications for testicular sperm extraction (TESE) with intracytoplasmic sperm injection (ICSI) provide great advantages for patients with non-obstructive azoospermia. Such success, however, also means that genetic abnormalities in non-obstructive azoospermia can be transmitted to the next generation, demonstrating the importance of being able to understand the genetic background of non-obstructive azoospermia. We have previously reported that human leukocyte antigens (HLA)-A33 and -B44 in the HLA class I region and the HLA-DRB1*1302 allele in the HLA class II region are linked to susceptibility to non-obstructive azoospermia in Japanese men. However, strong linkage of HLA-DRB1*1302 with HLA-A33 and -B44 is also evident in the Japanese population. Thus, uncertainty prevails as to whether the HLA class I or class II molecule is more directly associated with non-obstructive azoospermia. In the present study, we performed association analysis with 21 polymorphic microsatellite markers identified near the HLA genes to map the gene involved in the development of non-obstructive azoospermia more precisely. Microsatellite markers located in the HLA class I region or the class III region showed no statistically significant association with this disorder, although once again the HLA-A33 and -B44 alleles showed a significant association. In contrast, some of the microsatellite markers in the HLA class II region and at the HLA-DRB1 and -DQB1 loci displayed strong associations with non-obstructive azoospermia. Taken together, our previous and present data suggest that the critical region for development of non-obstructive azoospermia is near the HLA-DRB1 and -DQB1 segments in the HLA class II region.  相似文献   

2.
Human leucocyte antigen (HLA)-DRB1*15 is associated with predisposition to multiple sclerosis (MS), although conjecture surrounds the possible involvement of an alternate risk locus in the class I region of the HLA complex. We have shown previously that an alternate MS risk allele(s) may be encompassed by the telomerically extended DRB1*15 haplotype, and here, we have attempted to map the putative variant. Thirteen microsatellite markers encompassing a 6.79-megabase (D6S2236-G51152) region, and the DRB1 and DQB1 genes, were genotyped in 166 MS simplex families and 104 control families from the Australian State of Tasmania and 153 narcolepsy simplex families (trios) from the USA. Complementary approaches were used to investigate residual predisposing effects of microsatellite alleles comprising the extended DRB1*15 haplotype taking into account the strong predisposing effect of DRB1*15: (1) Disease association of the extended DRB1*15 haplotype was compared for MS and narcolepsy families--predisposing effects were observed for extended class I microsatellite marker alleles in MS families, but not narcolepsy families; (2) disease association of the extended DRB1*15 haplotype was investigated after conditioning MS and control haplotypes on the absence of DRB1*15--a significant predisposing effect was observed for a 627-kb haplotype (D6S258 allele 8-MOGCA allele 4; MOG, myelin oligodendrocyte glycoprotein) spanning the extended class I region. MOGCA allele 4 displayed the strongest predisposing effect in DRB1*15-conditioned haplotypes (p = 0.0006; OR 2.83 [1.54-5.19]). Together, these data confirm that an alternate MS risk locus exists in the extended class I region in Tasmanian MS patients independent of DRB1*15.  相似文献   

3.
This study, part of the Genetic Analysis Workshop 14 (GAW14), explored real Collaborative Study on the Genetics of Alcoholism data for linkage and association mapping between genetic polymorphisms (microsatellite and single-nucleotide polymorphisms (SNPs)) and beta (16.5-20 Hz) oscillations of the brain rhythms (ecb21). The ecb21 phenotype underwent the statistical adjustments for the age of participants, and for attaining a normal distribution. A total of 1,000 subjects' available phenotypes were included in linkage analysis with microsatellite markers. Linkage analysis was performed only for chromosome 4 where a quantitative trait locus with 5.01 LOD score had been previously reported. Previous findings related this location with the gamma-aminobutyric acid type A (GABAA) receptor. At the same location, our analysis showed a LOD score of 2.2. This decrease in the LOD score is the result of a drastic reduction (one-third) of the available GAW14 phenotypic data. We performed SNP and haplotype association analyses with the same phenotypic data under the linkage peak region on chromosome 4. Seven Affymetrix and two Illumina SNPs showed significant associations with ecb21 phenotype. A haplotype, a combination of SNPs TSC0044171 and TSC0551006 (the latter almost under the region of GABAA genes), showed a significant association with ecb21 (p = 0.015) and a relatively high frequency in the sample studied. Our results affirmed that the GABA region has potential of harboring genes that contribute quantitatively to the beta oscillation of the brain rhythms. The inclusion of the remaining 614 subjects, which in the GAW14 had missing data for the ecb21, can improve the strength of the associations as they have already shown that they contribute quite important information in the linkage analysis.  相似文献   

4.
OBJECTIVE: Cohort and case-control genetic association studies offer the greatest power to detect small genotypic influences on disease phenotypes, relative to family-based designs. However, genetic subdivisions could confound studies involving unrelated individuals, but the topic has been little investigated. We examined geographical and interallelic association of SNP and microsatellite haplotypes of the Y chromosome, of regions of chromosome 11, and of autosomal SNP genotypes relevant to cardiovascular risk traits in a UK-wide epidemiological survey. RESULTS: We show evidence (p = 0.00001) of the Danelaw history of the UK, marked by a two-fold excess of a Viking Y haplotype in central England. We also found evidence for a (different) single-centre geographical over-representation of one haplotype, both for APOC3-A4-A5 and for IGF2. The basis of this remains obscure but neither reflect genotyping error nor correlate with the phenotypic associations by centre of these markers. A panel of SNPs relevant to cardiovascular risks traits showed neither association with geographical location nor with Y haplotypes. CONCLUSION: Combinations of Y haplotyping, autosomal haplotyping, and genome-wide SNP typing, taken together with phenotypic2 associations, should improve epidemiological recognition and interpretation of possible confounding by genetic subdivision.  相似文献   

5.
The prevalence of metabolic syndrome (MS) has been rising alarmingly worldwide, including in the United States, but knowledge on specific genetic determinants of MS is very limited. Therefore, we planned to identify the genetic determinants of MS as defined by National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATPIII) criteria. We performed linkage screen for MS using data from 692 Mexican Americans, who participated in the San Antonio Family Diabetes/Gallbladder Study (SAFDGS). We found strong evidence for linkage of MS on chromosome 7q (LOD = 3.6, empirical P = 6.0 × 10(-5)), between markers D7S2212 and D7S821. In addition, six chromosomal regions exhibited potential evidence for linkage (LOD ≥1.2) with MS. Furthermore, we examined 29 single-nucleotide polymorphisms (SNPs) from the fatty acid translocase (FAT or CD36, 18 SNPs) gene and guanine nucleotide binding protein, α transducing 3 (GNAT3, 11 SNPs) gene, located within the 1-LOD support interval region for their association with MS and its related traits. Several SNPs were associated with MS and its related traits. Remarkably, rs11760281 in GNAT3 and rs1194197 near CD36 exhibited the strongest associations with MS (P = 0.0003, relative risk (RR) = 1.6 and P = 0.004, RR = 1.7, respectively) and several other related traits. These two variants explained ~18% of the MS linkage evidence on chromosome 7q21, and together conferred approximately threefold increase in MS risk (RR = 2.7). In conclusion, our linkage and subsequent association studies implicate a region on chromosome 7q21 to influence MS in Mexican Americans.  相似文献   

6.
Linkage of human narcolepsy with HLA association to chromosome 4p13-q21   总被引:2,自引:0,他引:2  
Although narcolepsy is highly associated with human leukocyte antigen (HLA) DQ6/DQB1*0602 and/or DR2/DRB1*1501, most individuals with the HLA haplotype are free of narcolepsy. This indicates that HLA alone makes a relatively small contribution to the development of narcolepsy and that a non-HLA gene(s) can contribute to the genetic predisposition even in narcoleptic cases with HLA association. We conducted a genome-wide linkage search for narcolepsy in eight Japanese families with 21 DR2-positive patients (14 narcoleptic cases with cataplexy and 7 cases with an incomplete form of narcolepsy). A lod score of 3.09 suggested linkage to chromosome 4p13-q21. A lod score of 1.53 was obtained at the HLA-DRB1 locus, though this lod score may be biased since all the affected patients and many of the family members were DR2-positive. No other loci including hypocretin, hypocretin receptor 1, and hypocretin receptor 2 had lod scores greater than 1.0. The present study suggests that chromosome 4p13-q21 contains a second locus for HLA-associated human narcolepsy.  相似文献   

7.
A previously accomplished whole-genome scan for osteochondrosis (OC) and OC dissecans (OCD) in South German Coldblood horses using 250 microsatellite markers identified putative quantitative trait loci (QTL). A chromosome-wide significant QTL for fetlock OCD was found on Equus caballus chromosome (ECA) 4q at a relative position of 70.0-73.3 cM. The aim of this study was to analyze associations of single nucleotide polymorphisms (SNPs) in candidate genes for OC in this region. The association analysis included 32 affected and 64 unaffected horses. Three SNPs located in intron 8, intron 9, and 3'-untranslated region (UTR) of the acyloxyacyl hydrolase (AOAH) gene on ECA4q were significantly associated with OCD in fetlock joints. In order to control for systematic environmental and quantitative genetic effects, we employed a linear animal model. The association of the SNP (AJ543065:g.703A>G) in the 3'-UTR of exon 21 was confirmed in the animal model analysis and a significant additive genetic effect for fetlock OCD of 0.42 (P = 0.002) and a dominance effect of -0.32 (P = 0.03) was estimated. This is the first report on a marker in population-wide linkage disequilibrium with equine OCD in fetlock joints.  相似文献   

8.
Kim Y  Ryu J  Woo J  Kim JB  Kim CY  Lee C 《Animal genetics》2011,42(4):361-365
Genetic associations of nucleotide sequence variants with carcass traits in beef cattle were investigated using a genome-wide single nucleotide polymorphism (SNP) assay. Three hundred and thirteen Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,129 SNPs from 311 animals were analysed for each carcass phenotype after filtering by quality assurance. Five sequence markers were associated with one of the meat quantity or quality traits; rs109593638 on chromosome 3 with marbling score, rs109821175 on chromosome 11 and rs110862496 on chromosome 13 with backfat thickness (BFT), and rs110228023 on chromosome 6 and rs110201414 on chromosome 16 with eye muscle area (EMA) (P < 1.27 × 10(-6) , Bonferonni P < 0.05). The ss96319521 SNP, located within a gene with functions of muscle development, dishevelled homolog 1 (DVL1), would be a desirable candidate marker. Individuals with genotype CC at this gene appeared to have increased both EMA and carcass weight. Fine-mapping would be required to refine each of the five association signals shown in the current study for future application in marker-assisted selection for genetic improvement of beef quality and quantity.  相似文献   

9.
We report on a study performed to determine a boundary of the region with the potential to contribute to the predisposition to human narcolepsy (the susceptibility region) in the human leukocyte antigen (HLA) region. We investigated a Japanese narcolepsy family, in which a de novo chromosomal recombination occurred between the HLA-DRB1 and HLA-B genes in the proband. The recombinant chromosome carrying HLA-DRB1*1501 was transmitted to the affected child and grandchild, suggesting that a strong genetic factor(s) predisposing to the disorder was (were) present on the chromosome, and that the recombination breakpoint could be regarded as a boundary to the susceptibility region. To search for the breakpoint, we carried out allele typing at various polymorphic sites, e.g., microsatellite repeat polymorphisms, restriction fragment length polymorphisms, and single-nucleotide polymorphisms in the HLA region, and examined haplotypes with the polymorphic sites in the family members. Haplotype analyses revealed that the recombination breakpoint was present approximately 50 kb to the telomeric side of the palmitoyl-protein thioesterase-2 (PPT2) gene in the HLA class III region. From the gene map of the HLA region, the cyclic AMP response element-binding protein-related protein gene (CREB-RP) appeared to be located at the telomeric end in the 50-kb region. Therefore, the data presented here suggest that the susceptibility region for the disorder in the family is present on the centromeric side of the CREB-RP gene in the recombinant Chromosome 6 carrying HLA-DRB1*1501.  相似文献   

10.
Previous linkage analyses of families with multiple cases of schizophrenia by us and others have confirmed the involvement of the chromosome 11q22-24 region in the etiology of schizophrenia, with LOD scores of 3.4 and 3.1. We now report fine mapping of a susceptibility gene in the 11q22-24 region, determined on the basis of a University College London (UCL) sample of 496 cases and 488 supernormal controls. Confirmation was then performed by the study of an Aberdeen sample consisting of 858 cases and 591 controls (for a total of 2,433 individuals: 1,354 with schizophrenia and 1,079 controls). Seven microsatellite or single-nucleotide polymorphism (SNP) markers localized within or near the FXYD6 gene showed empirically significant allelic associations with schizophrenia in the UCL sample (for D11S1998, P=.021; for rs3168238, P=.009; for TTTC20.2, P=.048; for rs1815774, P=.049; for rs4938445, P=.010; for rs4938446, P=.025; for rs497768, P=.023). Several haplotypes were also found to be associated with schizophrenia; for example, haplotype Hap-F21 comprising markers rs10790212-rs4938445-rs497768 was found to be associated with schizophrenia, by a global permutation test (P=.002). Positive markers in the UCL sample were then genotyped in the Aberdeen sample. Two of these SNPs were found to be associated with schizophrenia in the Scottish sample (for rs4938445, P=.044; for rs497768, P=.037). The Hap-F21 haplotype also showed significant association with schizophrenia in the Aberdeen sample, with the same alleles being associated (P=.013). The FXYD6 gene encodes a protein called "phosphohippolin" that is highly expressed in regions of the brain thought to be involved in schizophrenia. The protein functions by modulating the kinetic properties of Na,K-ATPase to the specific physiological requirements of the tissue. Etiological base-pair changes in FXYD6 or in associated promoter/control regions are likely to cause abnormal function or expression of phosphohippolin and to increase genetic susceptibility to schizophrenia.  相似文献   

11.
Bronchial asthma is a chronic inflammatory respiratory disease that is caused by the complex interaction of environmental influences and genetic susceptibility. The first genome-wide association study of bronchial asthma discovered a significant association between SNPs within 17q12-21 genomic region and childhood bronchial asthma in individuals of European descent. Association with this genomic region was then replicated in a number of independent samples of European and Asian descent. Here we report results of the first genome-wide association study of bronchial asthma in the Volga-Ural region of Russia. The present study includes 358 unrelated patients with physician-diagnosed bronchial asthma and 369 disease-free control subjects of different ethnic origin (Russians, Tatars and Bashkirs). Genotyping of DNA samples was carried out using the Illumina Human610 quad array as a part of GABRIEL project (contract from the EC No LSHB-CT-2006-018996). After QC filtering procedures, a final set of 550915 SNPs genotyped in 330 cases and 348 controls was tested for association with bronchial asthma. Five markers on chromosome 17q12-21 showed statistically significant association with bronchial asthma (p < or = 4.79 x 10(-7)). SNP rs7216389 with the strongest evidence for association (p = 1.01 x 10(-7)) is located within the first intron of the GSDMB gene. Evidence for association was stronger with childhood-onset asthma (p = 1.97 x 10(-6) for SNP rs7216389) compared to late-onset asthma (p = 1.8 x 10(-4) for SNP rs7216389). Our replication study using three SNPs within GSDMB gene confirmed association with only childhood-onset asthma. In summary, these results suggest an important role for genetic variants within 17q12-q21 region in the development of bronchial asthma in the Volga-Ural region of Russia.  相似文献   

12.
To map human chromosome 2 region associated with type 1 diabetes mellitus, 89 families with concordant and discordant sib pairs were analyzed. Linkage and association with type 1 diabetes were examined using polymorphic microsatellite markers spanning the region of about 4 Mb. The linkage plot was constructed, and association of the five microsatellite markers within the chromosomal region 2q35 was examined. Polymorphic marker D2S137 (Z' = 3.225, p(c) = 0.0048) demonstrated maximum linkage and association with type 1 diabetes.  相似文献   

13.
14.
Single nucleotide polymorphisms (SNPs) in loci 1p13 and 9p21 have previously been found to be associated with incident coronary heart disease (CHD). This study aimed to investigate whether these SNPs show associations with fatal CHD in a population-based cohort study after adjustment for socioeconomic- and lifestyle-related CHD risk factors not commonly included in genetic association studies. Using the population-based Cohort of Norway (CONOR), a nested case-cohort study was set up and DNA from 2,953 subjects (829 cases and 2,124 non-cases) were genotyped. The association with fatal CHD was estimated for four SNPs, three from locus 1p13 and one from locus 9p21. Multivariable Cox regression was used to estimate unstratified and gender-stratified hazard ratios while adjusting for major CHD risk factors. The associations between three SNPs from locus 1p13 and non-HDL cholesterol levels were also estimated. Men homozygous for the risk alleles on rs1333049 (9p21) and rs14000 (1p13) were found to have significantly increased hazard ratios in crude and adjusted models, and the hazard ratios remained statistically significant when both genders were analyzed together. Adjustment for additional socioeconomic- and lifestyle-related CHD risk factors influenced the association estimates only slightly. No significant associations were observed between the other two SNPs in loci 1p13 (rs599839 and rs646776) and CHD mortality in either gender. Both rs599839 and rs646776 showed significant, gradual increases in non-HDL cholesterol levels with increasing number of risk alleles. This study confirms the association between 9p21 (rs1333049) and fatal CHD in a Norwegian population-based cohort. The effect was not influenced by several socioeconomic- and lifestyle-related risk factors. Our results show that 1p13 (rs14000) may also be associated with fatal CHD. SNPs at 1p13 (rs599839 and rs646776) were associated with non-HDL cholesterol levels.  相似文献   

15.
Psoriasis is a common skin disorder of multifactorial origin. Genomewide scans for disease susceptibility have repeatedly demonstrated the existence of a major locus, PSORS1 (psoriasis susceptibility 1), contained within the major histocompatibility complex (MHC), on chromosome 6p21. Subsequent refinement studies have highlighted linkage disequilibrium (LD) with psoriasis, along a 150-kb segment that includes at least three candidate genes (encoding human leukocyte antigen-C [HLA-C], alpha-helix-coiled-coil-rod homologue, and corneodesmosin), each of which has been shown to harbor disease-associated alleles. However, the boundaries of the minimal PSORS1 region remain poorly defined. Moreover, interpretations of allelic association with psoriasis are compounded by limited insight of LD conservation within MHC class I interval. To address these issues, we have pursued a high-resolution genetic characterization of the PSORS1 locus. We resequenced genomic segments along a 220-kb region at chromosome 6p21 and identified a total of 119 high-frequency SNPs. Using 59 SNPs (18 coding and 41 noncoding SNPs) whose position was representative of the overall marker distribution, we genotyped a data set of 171 independently ascertained parent-affected offspring trios. Family-based association analysis of this cohort highlighted two SNPs (n.7 and n.9) respectively lying 7 and 4 kb proximal to HLA-C. These markers generated highly significant evidence of disease association (P<10-9), several orders of magnitude greater than the observed significance displayed by any other SNP that has previously been associated with disease susceptibility. This observation was replicated in a Gujarati Indian case/control data set. Haplotype-based analysis detected overtransmission of a cluster of chromosomes, which probably originated by ancestral mutation of a common disease-bearing haplotype. The only markers exclusive to the overtransmitted chromosomes are SNPs n.7 and n.9, which define a 10-kb PSORS1 core risk haplotype. These data demonstrate the power of SNP haplotype-based association analyses and provide high-resolution dissection of genetic variation across the PSORS1 interval, the major susceptibility locus for psoriasis.  相似文献   

16.
High density lipoprotein cholesterol (HDL-C) is inversely associated with coronary heart disease and has a genetic component; however, linkage to HDL-C is not conclusive. Subfractions of HDL, such as HDL(3)-C, may be better phenotypes for linkage studies. Using HDL(3)-C levels measured on 907 Framingham Heart Study subjects from 330 families around 1987, we conducted a genome-wide variance components linkage analysis with 401 microsatellite markers spaced approximately 10 centimorgan (cM) apart. Nine candidate genes were identified and annotated using a bioinformatics approach in the region of the highest linkage peak. Twenty-eight single nucleotide polymorphisms (SNPs) were selected from these candidate genes, and linkage and family-based association fine mapping were conducted using these SNPs. The highest multipoint log-of-the-odds (LOD) score from the initial linkage analysis was 3.7 at 133 cM on chromosome 6. Linkage analyses with additional SNPs yielded the highest LOD score of 4.0 at 129 cM on chromosome 6. Family-based association analysis revealed that SNP rs2257104 in PLAGL1 at approximately 143 cM was associated with multivariable adjusted HDL(3) (P = 0.03). Further study of the linkage region and exploration of other variants in PLAGL1 are warranted to define the potential functional variants of HDL-C metabolism.  相似文献   

17.
Linkage of chromosome 11q13 to type 1 diabetes (T1D) was first reported from genome scans (Davies et al. 1994; Hashimoto et al. 1994) resulting in P <2.2 x 10(-5) (Luo et al. 1996) and designated IDDM4 ( insulin dependent diabetes mellitus 4). Association mapping under the linkage peak using 12 polymorphic microsatellite markers suggested some evidence of association with a two-marker haplotype, D11S1917*03-H0570POLYA*02, which was under-transmitted to affected siblings and over-transmitted to unaffected siblings ( P=1.5 x 10(-6)) (Nakagawa et al. 1998). Others have reported evidence for T1D association of the microsatellite marker D11S987, which is approximately 100 kb proximal to D11S1917 (Eckenrode et al. 2000). We have sequenced a 400-kb interval surrounding these loci and identified four genes, including the low-density lipoprotein receptor related protein (LRP5) gene, which has been considered as a functional candidate gene for T1D (Hey et al. 1998; Twells et al. 2001). Consequently, we have developed a comprehensive SNP map of the LRP5 gene region, and identified 95 SNPs encompassing 269 kb of genomic DNA, characterised the LD in the region and haplotypes (Twells et al. 2003). Here, we present our refined linkage curve of the IDDM4 region, comprising 32 microsatellite markers and 12 SNPs, providing a peak MLS=2.58, P=5 x 10(-4), at LRP5 g.17646G>T. The disease association data, largely focused in the LRP5 region with 1,106 T1D families, provided no further evidence for disease association at LRP5 or at D11S987. A second dataset, comprising 1,569 families from Finland, failed to replicate our previous findings at LRP5. The continued search for the variants of the putative IDDM4 locus will greatly benefit from the future development of a haplotype map of the genome.  相似文献   

18.
Recent genome-wide association scans (GWAS) and meta-analysis studies on European populations have identified many genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic dyslipidemia and coronary artery disease (CAD). In an attempt to replicate GWAS findings on a non-European sample, we examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638) in our Asian Indian cohort from the Sikh Diabetes Study (SDS) comprising 3,781 individuals (2,902 from Punjab and 879 from the US). Two of the six SNPs examined showed convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP rs3764261 with high-density lipoprotein cholesterol (HDL-C) (p?=?2.03×10(-26)). Our results also showed significant associations of two GWAS SNPs (rs964184 and rs12286037) from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with triglyceride (TG) levels in this Asian Indian cohort (rs964184: p?=?1.74×10(-17); rs12286037: p?=?1.58×10(-2)). We further explored 45 SNPs in a ~195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 genes) in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP) (UK) and SDS cohorts. Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis. However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p?=?1.06×10(-39)). Future targeted deep sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in dyslipidemia and hypertriglyceridemia (HTG) and, consequently, diabetes and CAD.  相似文献   

19.
We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each P ≤ 4 x 10(-6)). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls (P ≤ 0.001) and were highly significant in the combined dataset (P ≤ 6 x 10(-8)). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set P = 9 x 10(-9), replication set P = 7 x 10(-4), combined P = 2 x 10(-10)). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association.  相似文献   

20.
Svejgaard A 《Immunogenetics》2008,60(6):275-286
The discoveries in the 1970s of strong associations between various diseases and certain human leukocyte antigen (HLA) factors were a revolution within genetic epidemiology in the last century by demonstrating for the first time how genetic markers can help unravel the genetics of disorders with complex genetic backgrounds. HLA controls immune response genes and HLA associations indicate the involvement of autoimmunity. Multiple sclerosis (MS) was one of the first conditions proven to be HLA associated involving primarily HLA class II factors. We review how HLA studies give fundamental information on the genetics of the susceptibility to MS, on the importance of linkage disequilibrium in association studies, and on the pathogenesis of MS. The HLA-DRB1*1501 molecule may explain about 50% of MS cases and its role in the pathogenesis is supported by studies of transgenic mice. Studies of polymorphic non-HLA genetic markers are discussed based on linkage studies and candidate gene approaches including complete genome scans. No other markers have so far rivaled the importance of HLA in the genetic susceptibility to MS. Recently, large international collaborations provided strong evidence for the involvement of polymorphism of two cytokine receptor genes in the pathogenesis of MS: the interleukin 7 receptor alpha chain gene (IL7RA) on chromosome 5p13 and the interleukin 2 receptor alpha chain gene (IL2RA (=CD25)) on chromosome 10p15. It is estimated that the C allele of a single nucleotide polymorphism, rs6897932, within the alternative spliced exon 6 of IL7RA is involved in about 30% of MS cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号