首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermolysis bullosa simplex (EBS) is an inherited skin-blistering disease that is caused by dominant mutations in the genes for keratin K5 or K14 proteins. While the link between keratin mutations and keratinocyte fragility in EBS patients is clear, the exact biophysical mechanisms underlying cell fragility are not known. In this study, we tested the hypotheses that mutant K14-R125P filaments and/or networks in human keratinocytes are mechanically defective in their response to large-scale deformations. We found that mutant filaments and networks exhibit no obvious defects when subjected to large uniaxial strains and have no negative effects on the ability of human keratinocytes to survive large strains. We also found that the expression of mutant K14-R125P protein has no effect on the morphology of the F-actin or microtubule networks or their responses to large strains. Disassembly of the F-actin network with Latrunculin A unexpectedly led to a marked decrease in stretch-induced necrosis in both WT and mutant cells. Overall, our results contradict the hypotheses that EBS mutant keratin filaments and/or networks are mechanically defective. We suggest that future studies should test the alternative hypothesis that keratinocytes in EBS cells are fragile because they possess a sparser keratin network.  相似文献   

2.
In ecology, a hypothesis is usually not discarded if a few studies reject it, as long as there are other studies supporting it. How to assess the usefulness of ecological hypotheses is therefore not straightforward. Using the enemy release hypothesis as an example, we show how creating a hierarchy of hypotheses (HoH) can help reviewing and evaluating evidence for and against an ecological hypothesis. In a HoH, a broad, overarching hypothesis branches into more specific and better testable sub‐hypotheses. The enemy release hypothesis is a major hypothesis in invasion ecology and posits that the absence of enemies in the exotic range of an alien species is a cause of its invasion success. Based on a systematic review of empirical tests of this hypothesis, we divided it into sub‐hypotheses, differentiating among 1) indicators for enemy release, 2) types of comparisons, and 3) types of enemies. We identified 176 empirical tests and weighted each test according to the number of alien species studied and the research method (experimental vs observational, field vs enclosure vs laboratory). For the broadly formulated enemy release hypothesis, we found nearly as much supporting (36%) as questioning evidence (43%). At the sub‐hypotheses level, however, we found that some sub‐hypotheses are strongly supported by empirical evidence, whereas others receive hardly any support. These differences are further emphasized for some types of habitat and focal taxonomic groups. Our findings suggest that several specific formulations (i.e. sub‐hypotheses) of the broad enemy release hypothesis are useful, whereas other formulations should be viewed more critically. In general, the approach outlined here can help evaluate major ecological hypotheses and their specific sub‐hypotheses. Our study also highlights the need for a scientific debate on how much supporting evidence is sufficient to consider an ecological hypothesis to be useful.  相似文献   

3.
4.
I analyze and summarize the empirical evidence supporting alternative hypotheses posed to explain the evolution of rodent group-living. Eight hypotheses are considered: two rely on net fitness benefits to individuals, five rely on ecological and life-history constraints, and one uses elements of both. I expose the logic behind each hypothesis, identify its key predictions, examine how the available evidence on rodent socioecology supports or rejects its predictions, and identify some priorities for future research. I show that empirical support for most hypotheses is meager due to a lack of relevant studies. Also, empirical support for a particular hypothesis, when it exists, comes from studies of the same species used to formulate the original hypothesis. Two exceptions are the hypothesis that individual rodents live in groups to reduce their predation risk and the hypothesis that group-living was adopted by individuals to reduce their cost of thermoregulation. Finally, most hypotheses have been examined without regard to competing hypotheses and often in a restricted taxonomic context. This is clearly an unfortunate situation given that most competing hypotheses are not mutually exclusive. I suggest that in the future comparative approaches should be used. These studies should examine simultaneously the relevance of different benefits and constraints hypothesized to explain the evolution of rodent sociality.  相似文献   

5.
Aim Intraspecific variation in patch occupancy often is related to physical features of a landscape, such as the amount and distribution of habitat. However, communities occupying patchy environments typically exhibit non‐random distributions in which local assemblages of species‐poor patches are nested subsets of assemblages occupying more species‐rich patches. Nestedness of local communities implies interspecific differences in sensitivity to patchiness. Several hypotheses have been proposed to explain interspecific variation in responses to patchiness within a community, including differences in (1) colonization ability, (2) extinction proneness, (3) tolerance to disturbance, (4) sociality and (5) level of adaptation to prevailing environmental conditions. We used data on North American mammals to compare the performance of these ‘ecological’ hypotheses and the ‘physical landscape’ hypothesis. We then compared the best of these models against models that scaled landscape structure to ecologically relevant attributes of individual species. Location North America. Methods We analysed data on prevalence (i.e. proportion of patches occupied in a network of patches) and occupancy for 137 species of non‐volant mammals and twenty networks consisting of four to seventy‐five patches. Insular and terrestrial networks exhibited significantly different mean levels of prevalence and occupancy and thus were analysed separately. Indicator variables at ordinal and family levels were included in models to correct for effects caused by phylogeny. Akaike's information criterion was used in conjunction with ordinary least squares and logistic regression to compare hypotheses. Results A patch network's physical structure, indexed using patch area and isolation, received the greatest support among models predicting the prevalence of species on insular networks. Niche breadth (diet and habitat) received the greatest support for predicting prevalence of species occupying terrestrial networks. For both insular and terrestrial systems, physical features (patch area and isolation) received greater support than any of the ecological hypotheses for predicting species occupancy of individual patches. For terrestrial systems, scaling patch area by its suitability to a focal species and by individual area requirements of the species, and scaling patch isolation by species‐specific dispersal ability and niche breadth, resulted in models of patch occupancy that were superior to models relying solely on physical landscape features. For all selected models, unexplained levels of variation were high. Main conclusions Stochasticity dominated the systems we studied, indicating that random events are probably quite important in shaping local communities. With respect to deterministic factors, our results suggest that forces affecting species prevalence and occupancy may differ between insular and terrestrial systems. Physical features of insular systems appeared to swamp ecological differences among species in determining prevalence and occupancy, whereas species with broad niches were disproportionately represented in terrestrial networks. We hypothesize that differential extinction over long time periods in highly variable networks has driven nestedness of mammalian communities on islands, whereas differential colonization over shorter time‐scales in more homogeneous networks probably governed the local structure of terrestrial communities. Our results also demonstrate that integration of a species' ecological traits with physical features of a patch network is superior to reliance on either factor separately when attempting to predict the species' probability of patch occupancy in terrestrial systems.  相似文献   

6.
7.
Scientific research progresses by the dialectic dialogue between hypothesis building and the experimental testing of these hypotheses. Microbiologists as biologists in general can rely on an increasing set of sophisticated experimental methods for hypothesis testing such that many scientists maintain that progress in biology essentially comes with new experimental tools. While this is certainly true, the importance of hypothesis building in science should not be neglected. Some scientists rely on intuition for hypothesis building. However, there is also a large body of philosophical thinking on hypothesis building whose knowledge may be of use to young scientists. The present essay presents a primer into philosophical thoughts on hypothesis building and illustrates it with two hypotheses that played a major role in the history of science (the parallel axiom and the fifth element hypothesis). It continues with philosophical concepts on hypotheses as a calculus that fits observations (Copernicus), the need for plausibility (Descartes and Gilbert) and for explicatory power imposing a strong selection on theories (Darwin, James and Dewey). Galilei introduced and James and Poincaré later justified the reductionist principle in hypothesis building. Waddington stressed the feed-forward aspect of fruitful hypothesis building, while Poincaré called for a dialogue between experiment and hypothesis and distinguished false, true, fruitful and dangerous hypotheses. Theoretical biology plays a much lesser role than theoretical physics because physical thinking strives for unification principle across the universe while biology is confronted with a breathtaking diversity of life forms and its historical development on a single planet. Knowledge of the philosophical foundations on hypothesis building in science might stimulate more hypothesis-driven experimentation that simple observation-oriented “fishing expeditions” in biological research.  相似文献   

8.
Complex genetic interactions lie at the foundation of many diseases. Understanding the nature of these interactions is critical to developing rational intervention strategies. In mammalian systems hypothesis testing in vivo is expensive, time consuming, and often restricted to a few physiological endpoints. Thus, computational methods that generate causal hypotheses can help to prioritize targets for experimental intervention. We propose a Bayesian statistical method to infer networks of causal relationships among genotypes and phenotypes using expression quantitative trait loci (eQTL) data from genetically randomized populations. Causal relationships between network variables are described with hierarchical regression models. Prior distributions on the network structure enforce graph sparsity and have the potential to encode prior biological knowledge about the network. An efficient Monte Carlo method is used to search across the model space and sample highly probable networks. The result is an ensemble of networks that provide a measure of confidence in the estimated network topology. These networks can be used to make predictions of system-wide response to perturbations. We applied our method to kidney gene expression data from an MRL/MpJ × SM/J intercross population and predicted a previously uncharacterized feedback loop in the local renin-angiotensin system.  相似文献   

9.
Because Twitter and other social media are increasingly used for analyses based on altmetrics, this research sought to understand what contexts, affordance use, and social activities influence the tweeting behavior of astrophysicists. Thus, the presented study has been guided by three research questions that consider the influence of astrophysicists’ activities (i.e., publishing and tweeting frequency) and of their tweet construction and affordance use (i.e. use of hashtags, language, and emotions) on the conversational connections they have on Twitter. We found that astrophysicists communicate with a variety of user types (e.g. colleagues, science communicators, other researchers, and educators) and that in the ego networks of the astrophysicists clear groups consisting of users with different professional roles can be distinguished. Interestingly, the analysis of noun phrases and hashtags showed that when the astrophysicists address the different groups of very different professional composition they use very similar terminology, but that they do not talk to each other (i.e. mentioning other user names in tweets). The results also showed that in those areas of the ego networks that tweeted more the sentiment of the tweets tended to be closer to neutral, connecting frequent tweeting with information sharing activities rather than conversations or expressing opinions.  相似文献   

10.
Obesity, diabetes, and metabolic syndrome are growing worldwide health concerns, yet their causes are not fully understood. Research into the etiology of the obesity epidemic is highly influenced by our understanding of the evolutionary roots of metabolic control. For half a century, the thrifty gene hypothesis, which argues that obesity is an evolutionary adaptation for surviving periods of famine, has dominated the thinking on this topic. Obesity researchers are often not aware that there is, in fact, limited evidence to support the thrifty gene hypothesis and that alternative hypotheses have been suggested. This review presents evidence for and against the thrifty gene hypothesis and introduces readers to additional hypotheses for the evolutionary origins of the obesity epidemic. Because these alternate hypotheses imply significantly different strategies for research and clinical management of obesity, their consideration is critical to halting the spread of this epidemic.  相似文献   

11.
Our understanding of the functional morphology of the primate supraorbital region is based largely on previous morphometric and in vivo mechanical tests of hypotheses in non-human anthropoids. Prior tests of two structural hypotheses explaining morphological variation in the supraorbital region, the craniofacial size hypothesis and the spatial hypothesis, did not fully consider modern humans. We extend these previous findings to include modern humans by conducting morphometric tests of these two hypotheses in a sample of adult Melanesian crania. Morphometric correlates of structural predictions for the craniofacial size and spatial hypotheses were developed and compared to measurements of the supraorbital region via bivariate product-moment correlations. Measurements of the supraorbital region are significantly correlated with a craniofacial size estimate across individuals from this Melanesian sample. This result supports the prediction of the craniofacial size hypothesis that the magnitude of the supraorbital region is proportional to craniofacial size. The predicted link between the degree of neural-orbital disjunction and the magnitude of the supraorbital region, explicated in the spatial hypothesis, receives mixed support in the correlation analysis. These two results agree with previous research indicating that support for the craniofacial size and spatial hypotheses can be found across and within anthropoid primate species, including modern humans. Correlational support for both the craniofacial size and spatial hypotheses suggests multiple factors influence variation in the modern human supraorbital region. Thus, a single hypothesis cannot fully account for modern human variation in this region. The low bivariate correlation coefficients in this study further question whether existing hypotheses can adequately explain morphological variation in the supraorbital region in a primate population sample. Novel functional, structural, behavioral and developmental ideas must be explored if we are to better understand morphological variation in the modern human supraorbital region.  相似文献   

12.
Benjamini Y  Heller R 《Biometrics》2008,64(4):1215-1222
SUMMARY: We consider the problem of testing for partial conjunction of hypothesis, which argues that at least u out of n tested hypotheses are false. It offers an in-between approach to the testing of the conjunction of null hypotheses against the alternative that at least one is not, and the testing of the disjunction of null hypotheses against the alternative that all hypotheses are not null. We suggest powerful test statistics for testing such a partial conjunction hypothesis that are valid under dependence between the test statistics as well as under independence. We then address the problem of testing many partial conjunction hypotheses simultaneously using the false discovery rate (FDR) approach. We prove that if the FDR controlling procedure in Benjamini and Hochberg (1995, Journal of the Royal Statistical Society, Series B 57, 289-300) is used for this purpose the FDR is controlled under various dependency structures. Moreover, we can screen at all levels simultaneously in order to display the findings on a superimposed map and still control an appropriate FDR measure. We apply the method to examples from microarray analysis and functional magnetic resonance imaging (fMRI), two application areas where the need for partial conjunction analysis has been identified.  相似文献   

13.
Alzheimer's disease (AD) is the most common type of dementia. Both its incidence and prevalence are expected to increase exponentially as populations' age worldwide. Despite impressive efforts of research worldwide, neither cure nor effective preventive strategy is available for this devastating disease. Currently there are several hypotheses on what causes AD, with the amyloid hypothesis being the most investigated and accepted hypothesis over the past 20 years. However the exact role of amyloid-β in the onset and progression of AD is not yet fully understood, and even the validity of the amyloid hypothesis itself is still being discussed. This debate is fuelled by the vascular hypothesis, as increasing epidemiological, neuroimaging, pathological, pharmacotherapeutic and clinical studies suggest that vascular pathology plays a key role in the onset and progression of AD. We here will discuss arguments in favor and limitations of both hypotheses within the framework of available literature, but also provide arguments for convergence of both hypotheses.Finally we propose approaches that may aid in unraveling the etiology and treatment of AD. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

14.
While lures of plant origin are vital tools in dacine (Diptera: Tephritidae) pest management, the ecological and evolutionary significance of this lure response remains enigmatic. Two hypotheses (the ancestral host hypothesis and sexual selection by female choice) have been invoked to explain the functional significance of these chemicals to dacine fruit flies. These hypotheses are often treated as alternatives to one another and evidence favouring one is used to reject the other. This review highlights that these two hypotheses are not logical alternatives to each other as the ancestral host hypothesis attempts to explain the ultimate function of the response of Dacinae to these plant-derived parapheromones while the sexual selection hypothesis provides a proximate explanation for lure response. Research on lure response, dacine mating behaviour, functional significance of lures, plant phylogeny and biochemistry and dacine pheromone chemistry are used to evaluate the evidence in relation to both these hypotheses. Some of the key findings are that there is evidence both in support of and against these two hypotheses. Response of fruit flies to related phenyl propanoids to those commonly used as lures in pest management and distribution of phenyl propanoids attractive to dacines among plant orders strongly support the ancestral host hypothesis. Evidence from pheromone chemistry, dacine mating behaviour and the functional significance of lures both support and contradict the sexual selection hypothesis. Lures appear to have different proximate functions in different dacine species. Considerably greater research is needed to clarify the functional role of phytochemical lures to dacine fruit flies. The two prevalent hypotheses should be investigated independently. Specific research on dacine phylogeny and distribution of lures in plants in relation to ecological roles played by adult dacines is required to elucidate the ultimate roles of the chemicals. Exploration of female response to lures and the behavioural consequences of dacine response to these chemicals to both the insect and plant may shed light on the proximate functions of these chemicals.  相似文献   

15.
Wildlife managers require reliable information on factors that influence animal populations to develop successful management programs, including the puma (Puma concolor), in western North America. As puma populations have recovered in recent decades because of restrictions on human-caused mortality, managers need a clear understanding of the factors that limit or regulate puma populations and how those factors might be manipulated to achieve management objectives, including sustaining puma and other wildlife populations, providing hunting opportunity, and reducing puma interactions with people. I synthesized technical literature on puma populations, behavior, and relationships with prey that have contributed to hypotheses on puma population limitation and regulation. Current hypotheses on puma population limitation include the social limitation hypothesis and the food limitation hypothesis. Associated with each of those are 2 hypotheses on puma population regulation: the social regulation hypothesis and the competition regulation hypothesis. I organize the biological and ecological attributes of pumas reported in the literature under these hypotheses. I discuss the validity of these hypotheses based on the limits of the research associated with the hypotheses and the evolutionary processes theoretically underlying them. I review the management predictions as framed by these hypotheses as they pertain to puma hunting, puma-prey relationships, and human-puma interactions. The food limitation and competition regulation hypotheses explain more phenomena associated with puma and likely would guide more successful management outcomes. © 2019 The Wildlife Society.  相似文献   

16.
M. S. Olson 《Genetics》1997,147(4):1933-1942
Discrimination between disomic and tetrasomic inheritance aids in determining whether tetraploids originated by allotetraploidy or autotetraploidy, respectively. Past assessments of inheritance in tetraploids have used analyses whereby each inheritance hypothesis is tested independently. I present a Bayesian analysis that is appropriate for discriminating among several inheritance hypotheses and can be used in any case where hypotheses are defined by discrete distributions. The Bayesian approach incorporates prior knowledge of the probability of occurrence of disomic and tetrasomic hypotheses so that the results of the analysis are not biased by the fact that there is a single tetrasomic hypothesis and multiple disomic hypotheses. This analysis is used to interpret data from crosses in the tetraploid Astilbe biternata, a herbaceous plant native to the southern Appalachians. The progeny ratios from all crosses favored the hypothesis of disomic inheritance at both the PGM and slow-PGI loci. These results support earlier cytogenetic evidence for the allotetraploid origin of Astilbe biternata.  相似文献   

17.
Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not required for quality control because selective fusion is sufficient; (ii) increased connectivity may have non‐linear effects on the diffusion rate of proteins; and (iii) fused networks can act to dampen biochemical fluctuations. We hope to convey to the reader that quantitative approaches can drive advances in the understanding of the physiological advantage of these morphological changes.
  相似文献   

18.
Yu  Yun  Jermaine  Christopher  Nakhleh  Luay 《BMC genomics》2016,17(10):784-124

Background

Phylogenetic networks are leaf-labeled graphs used to model and display complex evolutionary relationships that do not fit a single tree. There are two classes of phylogenetic networks: Data-display networks and evolutionary networks. While data-display networks are very commonly used to explore data, they are not amenable to incorporating probabilistic models of gene and genome evolution. Evolutionary networks, on the other hand, can accommodate such probabilistic models, but they are not commonly used for exploration.

Results

In this work, we show how to turn evolutionary networks into a tool for statistical exploration of phylogenetic hypotheses via a novel application of Gibbs sampling. We demonstrate the utility of our work on two recently available genomic data sets, one from a group of mosquitos and the other from a group of modern birds. We demonstrate that our method allows the use of evolutionary networks not only for explicit modeling of reticulate evolutionary histories, but also for exploring conflicting treelike hypotheses. We further demonstrate the performance of the method on simulated data sets, where the true evolutionary histories are known.

Conclusion

We introduce an approach to explore phylogenetic hypotheses over evolutionary phylogenetic networks using Gibbs sampling. The hypotheses could involve reticulate and non-reticulate evolutionary processes simultaneously as we illustrate on mosquito and modern bird genomic data sets.
  相似文献   

19.
How the cilium appeared is still such a poorly defined question that current hypotheses range from a symbiotic spirochaete to a cellular eye. In this paper, the whole question is subdivided into a list of problems which are morphological, physiological and temporal. These problems are examined one by one, in order to analyse the most popular exogenous hypothesis of Margulis as well as other recent exogenous and endogenous hypotheses. To overcome fundamental topological and temporal difficulties, a new endogenous hypothesis is expounded, according to which the cilium derives from a cellular peduncle reinforced with microtubules. This hypothesis implies a geometrical rationale for the ninefold symmetry. In the last paragraph the consequences of the various hypotheses are compared.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号