首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercellular gap junctions occur between the ciliated cells that make up the comb plates of the ctenophore Pleurobrachia. Similar junctions are found within the ciliated grooves which run from the apical organ to the first plate of each comb row, as well as throughout the endoderm of the meridional canals. Gap junctions were not found in the ectodermal tissue between the comb rows. The distribution of junctions suggests that excitation conduction within the ciliated grooves, comb plates and meridional canal endoderm may be epithelial.  相似文献   

2.
Summary Ciliary aggregations occur as the prototroch, neurotroch, apical system and as tufts associated with the eyes and superficial glands. The major collection of cilia is the locomotory organ or prototroch that runs around the equatorial plane of the larva. This band is composed of four contiguous rows of cells, the two medial rows bearing the long locomotory cilia. The cilia occur in clumps, with several clumps arising from each prototroch cell while both the main cells contribute to each clump. The central filaments of these cilia are orientated at right angles to the long axis of the clump, the direction of ciliary beat being at right angles to the progression of the metachronal wave along the prototroch. The neurotroch, extending from the mouth to the posterior pole of the larva, beats away from the mouth. The rate of beating is rapid, and the cilia are short. The apical area of the larva is bordered by five single lines of compound cilia that surround a few stiff cilia. All the cilia beat occasionally. A further line of cilia, the akrotroch, exists at a position halfway between the apical area and the prototroch on the same side as the mouth. These cilia beat towards the prototroch. Some of these cilia are associated with sets of glandular openings. The fine structure of the glands and cuticle is described. The glands are small mucous glands that open via a projecting pore which is encircled by rings of microvilli. They often occur in groups of four or in pairs. The cuticle is similar to that described previously for adult polychaetes.This work was started under a Science Research Council (U.K.) grant (B/SR/1871) for a Research Assistantship to Dr. M. S. Laverack and grateful acknowledgement is made for this. We would like to thank Dr. A. Boyde for all his advice and use of apparatus. The scanning electron microscope used in this study was provided by a Science Research Council (U. K.) grant to Dr. Boyde. We would like to thank Mrs. J. Parkes for photographic assistance.  相似文献   

3.
Summary Cilia bundled into combs or ctenes are an evolutionary innovation that allow comb jellies (animals in the phylum Ctenophora) to swim faster and grow to sizes at least two orders of magnitude larger than animals that propel themselves by beating single cilia. Ctenophore size, shape and swimming behaviors, however, may be constrained by the mechanisms that coordinate comb plate oscillations.Oscillations of comb plates onPleurobrachia bachei (a cydippid comb jelly), are coupled by fluid interactions between combs. Ctenes beat metachronously (in sequence) and the flows generated byP. bachei are retarded by the amount of time it takes a wave to pass down a group of ctenes. Our model predicts thatP. bachei size is constrained by the maximum thrust that can be produced by ctenes that beat in sequence and our flow visualization studies suggest that swimming via metachronous comb oscillations may constrainP. bachei to spherical shapes.In contrast, comb plate oscillations onMnemiopsis leidyi, a lobate comb jelly, are neurally coordinated and groups of ctenes beat in synchrony. As a result, fluid flows generated byM. leidyi are not retarded by the passage of metachronal waves down each comb row.M. leidyi reach sizes 15 times larger, but swim relatively slower (body lengths per second) thanP. bachei.We propose that propulsion via metachronous or synchronous comb plate oscillations has played an important role in the evolution of ctenophore shape and size and may have divided comb jellies into two evolutionary lineages.  相似文献   

4.
During the early development of Pecten maximus, the prototrochof the trochophore becomes the rim of the velum of the veliger.The prototroch consists of a tract of randomly-distributed cilia,but in the veliger an ordered pattern of ciliation with somecompound cilia develops. The thin epithelium connecting thevelum to the body of the larva bears no cilia, nor does theupper surface of the velum (except for an apical tuft); themuch thicker epithelium of the velum rim, however, is profuselyciliated. The cilia are arranged in five bands or rings eachextending round the rim of the velum. The ring closest to theupper (i.e. ventral) surface of the velum is the inner preoralring of single cilia. Below this are two rings of much longercilia grouped to form blade-shaped cirri, which each consistof 2 or 3 rows of 10-15 cilia. The cilia substructures indicatethat the direction of active beat of the cirrus is along theaxis of the rows. This beating generates the main swimming current.The energy demands of beating are reflected in the numerouslarge mitochondria in the cells bearing the cirri. Nerve processesin the velum may control beating. Below the cirri are an adoraltract of shorter cilia and then a ring of postoral cilia. Thevelum anatomy is that of a typical bivalve veliger, but somefeatures distinguish Pecten maximus from other bivalves. Theonfiguration of the bands of cilia and the orientation of theirbeating suggest that the veliger captures food particles bythe ‘opposed band’ method. This configuration islikely to be homologous with those of other spiralian larvae. *Present address: School of Biological Scrences, PortsmouthPolytechnic, King Henry I Street, Portsmouth, PO1 2DY, U.K. (Received 30 September 1988; accepted 1 December 1988)  相似文献   

5.
Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.  相似文献   

6.
7.
Prey capture by a tentacle of the ctenophore Pleurobrachia elicits a reversal of beat direction and increase in beat frequency of comb plates in rows adjacent to the catching tentacle (Tamm and Moss 1985). These ciliary motor responses were elicited in intact animals by repetitive electrical stimulation of a tentacle or the midsubtentacular body surface with a suction electrode. An isolated split-comb row preparation allowed stable intracellular recording from comb plate cells during electrically stimulated motor responses of the comb plates, which were imaged by high-speed video microscopy. During normal beating in the absence of electrical stimulation, comb plate cells showed no changes in the resting membrane potential, which was typically about -60 mV. Trains of electrical impulses (5/s, 5 ms duration, at 5-15 V) delivered by an extracellular suction electrode elicited summing facilitating synaptic potentials which gave rise to graded regenerative responses. High K+ artificial seawater caused progressive depolarization of the polster cells which led to volleys of action potentials. Current injection (depolarizing or release from hyperpolarizing current) also elicited regenerative responses; the rate of rise and the peak amplitude were graded with intensity of stimulus current beyond a threshold value of about -40 mV. Increasing levels of subthreshold depolarization were correlated with increasing rates of beating in the normal direction. Action potentials were accompanied by laydown (upward curvature of nonbeating plates), reversed beating at high frequency, and intermediate beat patterns. TEA increased the summed depolarization elicited by pulse train stimulation, as well as the size and duration of the action potentials. TEA-enhanced single action potentials evoked a sudden arrest, laydown and brief bout of reversed beating. Dual electrode impalements showed that cells in the same comb plate ridge experienced similar but not identical electrical activity, even though all of their cilia beat synchronously. The large number of cells making up a comb plate, their highly asymmetric shape, and their complex innervation and electrical characteristics present interesting features of bioelectric control not found in other cilia.  相似文献   

8.
THE METACHRONAL WAVE OF LATERAL CILIA OF MYTILUS EDULIS   总被引:4,自引:3,他引:1       下载免费PDF全文
The form of beat of cilia and the structure of the metachronal wave on the lateral gill epithelium of Mytulus edulis have been studied on living material by interference-contrast microscopy and stroboscopic illumination, and compared with the same features in rapid-fixed preparations studied by light microscopy and with the scanning electron microscope. The most striking finding is that the beat of the cilia is not planar, as previously assumed, but involves a sideways movement in the recovery stroke Previous reports on nonplanar ciliary beating from protozoan examples describe a planar effective stroke and a counterclockwise rotation in the recovery stroke; in this molluscan example there is a clockwise rotation in the recovery stroke The lateral inclination of the cilia in the recovery stroke is in the same direction as the propagation of the waves, and the orientation of cilia in the recovery stroke is thought to determine whether the waves move to the left or right of the direction of the effective stroke  相似文献   

9.
The nervous system of the planula larva of Anthopleura elegantissima consists of an apical organ, one type of endodermal receptor cell, two types of ectodermal receptor cells, central neurons and nerve plexus. Both interneural and neuromuscular synapses are found in the nerve plexus. The apical organ is a collection of about 100 long, columnar cells each bearing a long cilium and a collar of about 10 microvilli. The cilia of the apical organ are twisted together to form an apical tuft. The ciliary rootlets of the apical organ cells are extremely long, reaching to the basal processes of the cells adjacent to the mesoglea. All three types of sensory cells are tall and slender in profile and are identified by the presence of one or more of the following features: microtubules, small vesicles, membrane-bound granules and synapses. The interneurons are bipolar cells with somas restricted to the aboral end, adjacent to the apical organ. All synapses observed are polarized or asymmetrical. A diagram including all the elements of the nervous system is presented and the possible functions of the nervous system are discussed in relation to larval behavior.  相似文献   

10.
《The Journal of cell biology》1994,125(5):1127-1135
To image changes in intraciliary Ca controlling ciliary motility, we microinjected Ca Green dextran, a visible wavelength fluorescent Ca indicator, into eggs or two cell stages of the ctenophore Mnemiopsis leidyi. The embryos developed normally into free-swimming, approximately 0.5 mm cydippid larvae with cells and ciliary comb plates (approximately 100 microns long) loaded with the dye. Comb plates of larvae, like those of adult ctenophores, undergo spontaneous or electrically stimulated reversal of beat direction, triggered by Ca influx through voltage-sensitive Ca channels. Comb plates of larvae loaded with Ca Green dextran emit spontaneous or electrically stimulated fluorescent flashes along the entire length of their cilia, correlated with ciliary reversal. Fluorescence intensity peaks rapidly (34-50 ms), then slowly falls to resting level in approximately 1 s. Electrically stimulated Ca Green emissions often increase in steps to a maximum value near the end of the stimulus pulse train, and slowly decline in 1-2 s. In both spontaneous and electrically stimulated flashes, measurements at multiple sites along a single comb plate show that Ca Green fluorescence rises within 17 ms (1 video field) and to a similar relative extent above resting level from base to tip of the cilia. The decline of fluorescence intensity also begins simultaneously and proceeds at similar rates along the ciliary length. Ca-free sea water reversibly abolishes spontaneous and electrically stimulated Ca Green ciliary emissions as well as reversed beating. Calculations of Ca diffusion from the ciliary base show that Ca must enter the comb plate along the entire length of the ciliary membranes. The voltage-dependent Ca channels mediating changes in beat direction are therefore distributed over the length of the comb plate cilia. The observed rapid and virtually instantaneous Ca signal throughout the intraciliary space may be necessary for reprogramming the pattern of dynein activity responsible for reorientation of the ciliary beat cycle.  相似文献   

11.
Ctenophores, or comb jellies, are a distinct phylum of marine zooplankton with eight meridional rows of giant locomotory comb plates. Comb plates are the largest ciliary structures known, and provide unique experimental advantages for investigating the biology of cilia. Here, I review published and unpublished work on how ctenophores exploit both motile and sensory functions of cilia for much of their behavior. The long‐standing problem of ciliary coordination has been elucidated by experiments on a variety of ctenophores. The statocyst of ctenophores is an example of how mechanosensory properties of motile cilia orient animals to the direction of gravity. Excitation or inhibition of comb row beating provides adaptive locomotory responses, and global reversal of beat direction causes escape swimming. The diverse types of prey and feeding mechanisms of ctenophores are related to radiation in body form and morphology. The cydippid Pleurobrachia catches copepods on tentacles and undergoes unilateral ciliary reversal to sweep prey into its mouth. Mnemiopsis uses broad muscular lobes and ciliated auricles to capture and ingest prey. Beroë has giant smooth muscles and toothed macrocilia to rapidly engulf or bite through ctenophore prey, and uses reversible tissue adhesion to keep its mouth closed while swimming. Ciliary motor responses are calcium‐dependent, triggered by voltage‐activated calcium channels located along the length (reversed beating) or at the base (activation of beating) of ciliary membranes. Ciliary and muscular responses to stimuli are regulated by epithelial and mesogleal nerve nets with ultrastructurally identifiable synapses onto effector cells. Post‐embryonic patterns of comb row development in larval and adult stages are described and compared with regeneration of comb plates after surgical removal. Truly, cilia and ctenophores, like love and marriage, go together like a horse and carriage.  相似文献   

12.
This paper presents a simple and reasonable method for generating a phenomenological model of the internal mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and fit to a simple functional form called the "engine." This engine is incorporated into a recently developed hydrodynamic model that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia. We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due to hydrodynamic interactions between neighboring cilia.  相似文献   

13.
We have used a newly discovered reversal response of ctenophore comb plates to investigate the structural mechanisms controlling the direction of ciliary bending. High K+ concentrations cause cydippid larvae of the ctenophore Pleurobrachia to swim backward. High-speed cine films of backward-swimming animals show a 180 degree reversal in beat direction of the comb plates. Ion substitution and blocking experiments with artificial seawaters demonstrate that ciliary reversal is a Ca++-dependent response. Comb plate cilia possess unique morphological markers for numbering specific outer-doublet microtubules and identifying the sidedness of the central pair. Comb plates of forward- and backward-swimming ctenophores were frozen in different stages of the beat cycle by an "instantaneous fixation" method. Analysis of transverse and longitudinal sections of instantaneously fixed cilia showed that the assembly of outer doublets does not twist during ciliary reversal. This directly confirms the existence of radial switching mechanism regulating the sequence of active sliding on opposite sides of the axoneme. We also found that the axis of the central pair always remains perpendicular to the plane of bending; more importantly, the ultrastructural marker showed that the central pair does not rotate during a 180 degree reversal in beat direction. Thus, the orientation of the central pair does not control the direction of ciliary bending (i.e., the pattern of active sliding around the axoneme). We discuss the validity of this finding for three-dimensional as well as two-dimensional ciliary beat cycles and conclude that models of central-pair function based on correlative data alone must now be re-examined in light of these new findings on causal relations.  相似文献   

14.
The phosphoarginine shuttle system effectively regenerates ATP in the cilia of Paramecium caudatum. To estimate the effective concentration of ATP‐regenerating enzymes, we attempted to reconstitute certain ATP‐regenerating systems within the cilia of intact cortical sheets using exogenous enzymes and high‐energy substances. The addition of phosphoenolpyruvate, which is one of the substrates in glycolysis, did not increase the ciliary beat frequency, whereas phosphocreatine together with exogenous creatine kinase, effectively increased the ciliary beat frequency. In the presence of 0.6 mg/ml creatine kinase and 0.4 mM phosphocreatine, the ciliary beat frequency was comparable to that produced by the addition of phosphoarginine. This result indicates that the reconstituted phosphocreatine shuttle system can work as an artificial ATP‐regenerating system for ciliary movements. The effective concentration of creatine kinase in the reconstituted phosphocreatine shuttle system was estimated to be about 7.4 μM based on the molecular mass of creatine kinase (MW 81,000). Therefore, the effective concentration of arginine kinase in the cilia of live Paramecium is approximately 10 μM. This estimated concentration of intraciliary arginine kinase is sufficient to maintain a high ATP concentration throughout the cilia of P. caudatum.  相似文献   

15.
D B Bonar 《Tissue & cell》1978,10(1):153-165
The cephalic sensory organ is a superficial sensory receptor located between the velar lobes at the level of the shell aperture. Three cell types make up this sensory area: (1) six flask-shaped cells bearing numerous cilia; (2) adjacent supporting or accessory cells which have numerous, often branched, microvilli; and (3) vacuolated cells which occupy the center of the area. The flask-shaped cells appear to be the sensory units. These cells have a deep invaginated lumen, with cilia arising from the cell surface in the lumen oriented either toward the base of the lumen or toward the epidermal surface. These cilia, some of which extend slightly above the body surface, are presumed to be non-motile, as they lack (dynein?) arms on the axonemal A tubules and lack striated rootlets. The six flask cells are in intimate contact with the underlying cerebral ganglia and axons from each cell pass into ganglionic tissue. The supporting cells may be sensory, but no direct connection with the nervous system was seen. The function of the central vacuolated cells is not known. This cephalic organ may be a derivative of the original apical tuft of the trochophore stage.  相似文献   

16.
Potential recordings made simultaneously from opposite ends of the cell indicate that the cytoplasmic compartment of P. caudatum is nearly isopotential. Measured decrements of the spread of steady-state potentials are in essential agreement with calculated decrements for a short cable model of similar dimensions and electrical constants. Action potentials and passively conducted pulses spread at rates of over 100 µm per msec. In contrast, metachronal waves of ciliary beat progress over the cell with velocities below 1 µm per msec. Thus, electrical activity conducted by the plasma membrane cannot account for the metachronism of ciliary beat. The electrical properties of Paramecium are responsible, however, for coordinating the reorientation of cilia (either beating or paralyzed by NiCl2) which occurs over the entire cell in response to current passed across the plasma membrane. In response to a depolarization the cilia assume an anteriorly directed orientation ("ciliary reversal" for backward locomotion). The cilia over the anterior half of the organism reverse more strongly and with shorter latency than the cilia of the posterior half. This was true regardless of the location of the polarizing electrode. Since the membrane potential was shown to be essentially uniform between both ends of the cell, the cilia of the anterior and posterior must possess different sensitivities to membrane potential.  相似文献   

17.
The locomotor behavior of Paramecium depends on the ciliary beat direction and beat frequency. Changes in the ciliary beat are controlled by a signal transduction mechanism that follows changes in the membrane potential. These events take place in cilia covered with a ciliary membrane. To determine the effects of second messengers in the cilia, cortical sheets were used with intact ciliary membrane as a half-closed system in which each cilium is covered with a ciliary membrane with an opening to the cell body. Cyclic nucleotides and their derivatives applied from an opening to the cell body affected the ciliary beat. cAMP and 8-Br-cAMP increased the beat frequency and the efficiency of propulsion and acted antagonistically to the action of Ca(2+). cGMP and 8-Br-cGMP increased the efficiency of propulsion accompanying clear metachronal waves but decreased the beat frequency. These results indicate that the cyclic nucleotides affect target proteins in the ciliary axonemes surrounded by the ciliary membrane without a membrane potential and increase the efficiency of propulsion of the ciliary beat. In vitro phosphorylation of isolated ciliary axonemes in the presence of cyclic nucleotides and their derivatives revealed that the action of cAMP was correlated with the phosphorylation of 29-kDa and 65-kDa proteins and that the action of cGMP was correlated with the phosphorylation of a 42-kDa protein.  相似文献   

18.
We describe by light and electron microscopy a novel structure in the aboral sense organ (apical organ) of cydippid (Pleurobrachia) and lobate (Mnemiopsis) ctenophores. An elevated bundle of long, thin, microtubule-filled processes arises from the apical ends of two groups of epithelial cells located on opposite sides of the apical organ along the tentacular plane of the body. This bundle of axon-like processes arches over the epithelial floor like a bridge, with branches at both ends running toward opposing pairs of ciliary balancers that are motile pacemakers for the rows of locomotory ciliary comb plates. The bridge in Pleurobrachia is approximately 40 microm long and 3-4 microm wide and consists of approximately 60 closely packed processes, 0.2-0.8 microm thick, containing vesicles and numerous microtubules running parallel to their long axes. There are approximately 30 epithelial cells in each of the two groups giving rise to the bridge and each cell forms a single process, so roughly half of the processes in the bridge must originate from cells on one side and diverge into branches to a pair of balancers on the opposite side of the apical organ. The 150-200 cilia in each balancer arise from morphologically complex cellular projections with asymmetric lateral extensions directed towards a fork of the bridge. Presynaptic triad structures and vesicles are found in this region but clear examples of synaptic contacts between bridge processes and balancer cells have not yet been traced. Cydippid larvae of Mnemiopsis have a conspicuous bridge along the tentacular plane of the apical organ. Beroid ctenophores that lack tentacles at all stages do not have a bridge. We discuss the possibility that the bridge is an electrical conduction pathway to balancers that coordinates tentacle-evoked swimming responses of ctenophores, such as global ciliary excitation.  相似文献   

19.
Summary The ependymal cells of the toad subcommissural organ produce pale and dense secretory granules. Both types of granules are mainly concentrated in the apical cytoplasm and in the perinuclear region. Pale and dense granules are synthesized by and packed in the rough endoplasmic reticulum, bypassing the step of the Golgi apparatus. The apical cytoplasm of some subcommissural ependymal cells protrudes into the ventricle. All the cells project a few cilia and numerous slender, long microvilli into the ventricular lumen.Contacting the cilia and the microvilli there is a filamentous material identical to that observed in the fibre of Reissner at the aqueduct of Sylvius. In addition to filaments, the fibre of Reissner contains vacuolar formations. The fibre is surrounded by numerous ependymal cilia, some of which are embedded in the filamentous material of the fibre.The presence of numerous microvilli projected into the ventricle and the large number of vesicles scattered in the supranuclear cytoplasm seem to indicate that the subcommissural organ may have absorption functions. The fact that the intercellular space of the ependymal layer of the subcommissural organ is not separated from the ventricular lumen by tight junctions but by zonulae adhaerentes could indicate that the cerebrospinal fluid penetrates these intercellular spaces bathing all sides of the ependymal cells. The presence in the ependymal cells of vesicles opening into the intercellular space would be in agreement with the latter possibility.There are some ultrastructural differences between the ependymal cells of the cephalic end of the subcommissural organ and those of the caudal end. A critical analysis of Reissner's fibre formation is made.This investigation was partially supported by a Grant of the Wellcome Trust Foundation.Fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina. The author wishes to thank the valuable help of Mr. P. Heap.  相似文献   

20.
Daniela Uthe 《Hydrobiologia》1995,309(1-3):45-52
The cephalic sensory organ (CSO) in planktonic veliger larvae of Littorina littorea is situated dorsally between the velar lobes at the level of the shell aperture. It consists of ciliated primary sensory cells, adjacent accessory cells and supporting epithelial cells. Cell bodies of the ciliated cells originate in the cerebral commissure and their dendrites pass to the epidermis. The flask-shaped sensory cells are characterized by a deep invaginated lumen with modified cilia arising from the cell surface in the lumen. These cilia are presumed to be non-motile because they lack striated rootlets and show a modified microtubular pattern (6 + 2, 7 + 2 and 8 + 2). The adjacent accessory cells never possess an invaginated lumen; occasionally cilia and branched microvilli arise from the apical surface. These cells may be sensory, but there is no obvious direct connection with the nervous system. The supporting epithelial cells are part of the epidermis and flank the apical necks of the sensory and accessory cells. Morphological evidence suggests that the CSO may function in chemoreception related to substrate selection at settlement, feeding or other behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号