首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It is widely accepted that the repertoire of Melan-A-specific T cells naturally selected in melanoma patients is diverse and mostly nonoverlapping among different individuals. To date, however, no studies have addressed the TCR profile in different tumor sites and the peripheral blood from the same patient. We compared the TCR usage of Melan-A-specific T cells from different compartments of a single melanoma patient to evaluate possible clonotype expansion or preferential homing over a 4-mo follow-up period. Using HLA-A2 peptide tetramers, CD8(+) T cells recognizing the modified Melan-A immunodominant ELAGIGILTV peptide were isolated from four metastatic lesions resected from a single melanoma patient, and their TCR repertoire was studied. A panel of T cell clones was generated by cell cloning of tetramer-positive cells. Analysis of the TCR beta-chain V segment and the complementarity-determining region 3 (CDR3) length and sequence revealed a large diversity in the TCR repertoire, with only some of the clones showing a partial conservation in the CDR3. A similar degree of diversity was found by analyzing a number of T cell clones obtained after sorting a Melan-A-specific population derived from PBLs of the same patient after in vitro culture with the immunodominant epitope. Moreover, clonotypes found at one site were not present in another, suggesting the lack of expansion and circulation of one or more clonotypes. Taken together, these results buttress the notion that the CTLs recognizing the immunodominant Ag of Melan-A comprise a high number of different clonotypic TCR, of which only some exhibit common features in the CDR3.  相似文献   

2.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

3.
Radiation is generally considered to be an immunosuppressive agent that acts by killing radiosensitive lymphocytes. In this study, we demonstrate the noncytotoxic effects of ionizing radiation on MHC class I Ag presentation by bone marrow-derived dendritic cells (DCs) that have divergent consequences depending upon whether peptides are endogenously processed and loaded onto MHC class I molecules or are added exogenously. The endogenous pathway was examined using C57BL/6 murine DCs transduced with adenovirus to express the human melanoma/melanocyte Ag recognized by T cells (AdVMART1). Prior irradiation abrogated the ability of AdVMART1-transduced DCs to induce MART-1-specific T cell responses following their injection into mice. The ability of these same DCs to generate protective immunity against B16 melanoma, which expresses murine MART-1, was also abrogated by radiation. Failure of AdVMART1-transduced DCs to generate antitumor immunity following irradiation was not due to cytotoxicity or to radiation-induced block in DC maturation or loss in expression of MHC class I or costimulatory molecules. Expression of some of these molecules was affected, but because irradiation actually enhanced the ability of DCs to generate lymphocyte responses to the peptide MART-1(27-35) that is immunodominant in the context of HLA-A2.1, they were unlikely to be critical. The increase in lymphocyte reactivity generated by irradiated DCs pulsed with MART-1(27-35) also protected mice against growth of B16-A2/K(b) tumors in HLA-A2.1/K(b) transgenic mice. Taken together, these results suggest that radiation modulates MHC class I-mediated antitumor immunity by functionally affecting DC Ag presentation pathways.  相似文献   

4.
Vaccine strategies designed to elicit strong cell-mediated immune responses to HIV Ags are likely to lead to protective immunity against HIV infection. Dendritic cells (DC) are the most potent APCs capable of priming both MHC class I- and II-restricted, Ag-specific T cell responses. Utilizing a system in which cultured DC from HIV-seronegative donors were used as APC to present HIV-1 Ags to autologous T cells in vitro, the strength and specificity of primary HIV-specific CTL responses generated to exogenous HIV-1 Nef protein as well as intracellularly expressed nef transgene product were investigated. DC expressing the nef gene were able to stimulate Nef-specific CTL, with T cells from several donors recognizing more than one epitope restricted by a single HLA molecule. Primary Nef-specific CTL responses were also generated in vitro using DC pulsed with Nef protein. T cells primed with Nef-expressing DC (via protein or transgene) were able to lyse MHC class I-matched target cells pulsed with defined Nef epitope peptides as well as newly identified peptide epitopes. The addition of Th1-biasing cytokines IL-12 or IFN-alpha, during priming with Nef-expressing DC, enhanced the Nef-specific CTL responses generated using either Ag-loading approach. These results suggest that this in vitro vaccine model may be useful in identifying immunogenic epitopes as vaccine targets and in evaluating the effects of cytokines and other adjuvants on Ag-specific T cell induction. Successful approaches may provide information important to the development of prophylactic HIV vaccines and are envisioned to be readily translated into clinical DC-based therapeutic vaccines for HIV-1.  相似文献   

5.
6.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

7.
CD8(+) cytotoxic T lymphocytes (CTLs) generated by immunization with allogeneic cells or viral infection are able to lyse allogeneic or virally infected in vitro cells (e.g., lymphoma and mastocytoma). In contrast, it is reported that CD8(+) T cells are not essential for allograft rejection (e.g., heart and skin), and that clearance of influenza or the Sendai virus from virus-infected respiratory epithelium is normal or only slightly delayed after a primary viral challenge of CD8-knockout mice. To address this controversy, we generated H-2(d)-specific CD8(+) CTLs by a mixed lymphocyte culture and examined the susceptibility of a panel of H-2(d) cells to CTL lysis. KLN205 squamous cell carcinoma, Meth A fibrosarcoma, and BALB/c skin components were found to be resistant to CTL-mediated lysis. This resistance did not appear to be related to a reduced expression of MHC class I molecules, and all these cells could block the recognition of H-2(d) targets by CTLs in cold target inhibition assays. We extended our observation by persistently infecting the same panel of cell lines with defective-interfering Sendai virus particles. The Meth A and KLN205 lines infected with a variant Sendai virus were resistant to lysis by Sendai virus-specific CTLs. The Sendai virus-infected Meth A and KLN205 lines were able to block the lysis of Sendai virus-infected targets by CTLs in cold target inhibition assays. Taken together, these results suggest that not all in vivo tissues may be sensitive to CTL lysis.  相似文献   

8.
Inactivation of p53 has been implicated in many types of tumors particularly in non-small cell lung carcinoma, one of the most common cancers in which p53 mutation has been frequently identified. The aim of this study was to investigate the influence of p53 status on the regulation of tumor susceptibility to specific CTL-mediated cell death. For this purpose, we used a cytotoxic T lymphocyte clone, Heu127, able to lyse the human autologous lung carcinoma cell line, IGR-Heu, in a HLA-A2-restricted manner. Direct genomic DNA sequencing revealed that IGR-Heu expresses a mutated p53 at codon 132 of the exon 5 which results in the loss of p53 capacity to induce the expression of the p53-regulated gene product p21(waf/CIP1). Initial experiments demonstrated that IGR-Heu was resistant to Fas, TNF, and TRAIL apoptotic pathways. This correlated with the lack of p55 TNFRI, Fas, DR4, and DR5 expression. The effect of wild-type (wt) p53 restoration on the sensitization of IGR-Heu to autologous CTL clone lysis was investigated following infection of the tumor cell line with a recombinant adenovirus encoding the wt p53 (Adwtp53). We demonstrate that the restoration of wt p53 expression and function resulted in a significant potentiation of target cell susceptibility to CTL-mediated lysis. The wt p53-induced optimization of tumor cell killing by specific CTL involves at least in part Fas-mediated pathway via induction of CD95 expression by tumor cells but does not appear to interfere with granzyme B cytotoxic pathway.  相似文献   

9.
Several factors may influence sensitivity of melanoma cells to CTL lysis. One is the avidity of the CTL TCR. A second is that certain cytotoxic drugs have been reported to sensitize cancer cells to CTL lysis through Fas-mediated apoptosis. In this study, we examined whether antineoplastic agents 5-fluorouracil (5-FU) and dacarbazine (DTIC) sensitize melanoma cells to lysis of G209 peptide-specific CTL. Our results show that CTL generated from PBMC are HLA-A2 restricted and gp100 specific. Treatment with 5-FU or DTIC sensitized melanoma cells to lysis of G209-specific CTL. Most importantly, 5-FU- or DTIC-treated melanoma cells also became sensitive to low-avidity CTL, which per se are less cytolytic to melanomas. We sought to identify apoptotic pathways mediating this effect. The enhanced cytolysis was mediated through the perforin/granzyme pathway. Although 5-FU up-regulated FasR expression on melanoma cells, sensitization was not blocked by anti-Fas Ab, and the G209-specific CTL was Fas ligand (FasL) negative. However, when G209-specific CTL were stimulated to express FasL, FasL signaling also contributed to enhanced cytolysis. DTIC treatment, which did not increase FasR expression, also sensitized FasL-mediated killing induced by neutralizing anti-Fas Ab. For CD95L-positive G209-specific CTL, the sensitization was primarily mediated through the perforin/granzyme pathway regardless of up-regulation of FasR. The findings demonstrate that cytotoxic drug-mediated sensitization primes both perforin/granzyme and Fas-mediated killing by melanoma-specific CTL. Considering that most of autoreactive antitumor CTL are low avidity, the findings provide experimental basis for understanding cytotoxic and immunologic therapeutic synergy in melanoma.  相似文献   

10.
The specificities of cytotoxic T lymphocytes (CTL) were studied for the analysis of CTL against tumor-specific cell surface antigen(s) (TSSA) of non-virus-producing tumor cells induced by the Schmidt-Ruppin strain of Rous sarcoma virus (SR-RSV) in B10 congenic and recombinant mice. Eight CTL clones were established from immune spleen cells of B10.A(5R) mice. These clones demonstrated six patterns of cytotoxic reactivity in vitro: Two clones showed H-2 restriction in tumor cell lysis. Two other clones had the capacity to lyse syngeneic, H-2K-compatible B10 and H-2-incompatible B10.A(4R) tumor cells, but not YAC-1 cells. One clone had cytotoxic activity against syngeneic, H-2D-compatible B10.D2 tumor cells and YAC-1 cells, but not against H-2-incompatible tumor cells. One clone had cytotoxic activity against syngeneic and YAC-1 tumor cells, but not against either H-2-compatible or H-2-incompatible tumor cells. One clone had lytic activity to syngeneic, H-2-compatible, H-2-incompatible, and YAC-1 tumor cells. Another clone killed H-2-incompatible B10.A(4R) tumor and YAC-1 cells, but not syngeneic or H-2-compatible tumor cells. All these clones strongly expressed surface Thy-1.2 antigens, whereas the expression of Lyt-1.2 and Lyt-2.2 antigens was different from clone to clone. These results demonstrate heterogeneity of both lytic specificity and phenotype of CTL against RSV-induced mouse tumor cells, suggesting the existence of multiple antigenic sites on the RSV TSSA recognized by CTL populations.  相似文献   

11.
Recognition of tumor-associated Ags (TAAs) on tumor cells by CTLs and the subsequent tumor cell death are assumed to be dependent on TAA protein expression and to correlate directly with the level of peptide displayed in the binding site of the HLA class I molecule. In this study we evaluated whether the levels of Her-2/neu protein expression on human tumor cell lines directly correlate with HLA-A*0201/Her2/neu peptide presentation and CTL recognition. We developed a TCR mimic (TCRm) mAb designated 1B8 that specifically recognizes the HLA-A2.1/Her2/neu peptide (369-377) (Her2(369)-A2) complex. TCRm mAb staining intensity varied for the five human tumor cell lines analyzed, suggesting quantitative differences in levels of the Her2(369)-A2 complex on these cells. Analysis of tumor cell lines pretreated with IFN-gamma and TNF-alpha for Her2/neu protein and HLA-A2 molecule expression did not reveal a direct correlation between the levels of Her2/neu Ag, HLA-A2 molecule, and Her2(369)-A2 complex expression. However, compared with untreated cells, cytokine-treated cell lines showed an increase in Her2(369)-A2 epitope density that directly correlated with enhanced tumor cell death (p = 0.05). Although a trend was observed between tumor cell lysis and the level of the Her2(369)-A2 complex for untreated cells, the association was not significant. These findings suggest that tumor cell susceptibility to CTL-mediated lysis may be predicted based on the level of specific peptide-MHC class I expression rather than on the total level of TAA expression. Further, these studies demonstrate the potential of the TCRm mAb for validation of endogenous HLA-peptide epitopes on tumor cells.  相似文献   

12.
Bortezomib is a proteasome inhibitor that has direct antitumor effects. We and others have previously demonstrated that bortezomib could also sensitize tumor cells to killing via the death ligand, TRAIL. NK cells represent a potent antitumor effector cell. Therefore, we investigated whether bortezomib could sensitize tumor cells to NK cell-mediated killing. Preincubation of tumor cells with bortezomib had no effect on short-term NK cell killing or purified granule killing assays. Using a 24-h lysis assay, increases in tumor killing was only observed using perforin-deficient NK cells, and this increased killing was found to be dependent on both TRAIL and FasL, correlating with an increase in tumor Fas and DR5 expression. Long-term tumor outgrowth assays allowed for the detection of this increased tumor killing by activated NK cells following bortezomib treatment of the tumor. In a tumor purging assay, in which tumor:bone marrow cell mixtures were placed into lethally irradiated mice, only treatment of these mixtures with a combination of NK cells with bortezomib resulted in significant tumor-free survival of the recipients. These results demonstrate that bortezomib treatment can sensitize tumor cells to cellular effector pathways. These results suggest that the combination of proteasome inhibition with immune therapy may result in increased antitumor efficacy.  相似文献   

13.
Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter.  相似文献   

14.
15.
16.
Identification of cell types in tumor-associated stroma that are involved in the development of melanoma is hampered by their heterogeneity. The authors used flow cytometry and immunohistochemistry to demonstrate that anti-MART-1 antibodies can discriminate between melanoma and stroma cells. They investigated the cellular composition of the MART-1-, non-hematopoietic melanoma-associated stroma, finding it consisted mainly of Sca-1+ and CD146+ cells. These cell types were also observed in the skin and muscle adjacent to developing melanomas. The Sca-1+ cell population was observed distributed in the epidermis, hair follicle bulges, and tumor capsule. The CD146+ population was found distributed within the tumor, mainly associated with blood vessels in a perivascular location. In addition to a perivascular distribution, CD146+ cells expressed α-smooth muscle actin, lacked expression of endothelial markers CD31 and CD34, and were therefore identified as pericytes. Pericytes were found to be associated with CD31+ endothelial cells; however, some pericytes were also observed associated with CD31-, MART-1+ B16 melanoma cells that appeared to form blood vessel structures. Furthermore, the authors observed extensive nuclear expression of HIF-1α in melanoma and stroma cells, suggesting hypoxia is an important factor associated with the melanoma microenvironment and vascularization. The results suggest that pericytes and Sca-1+ stroma cells are important contributors to melanoma development.  相似文献   

17.
18.
Melanoma antigen recognized by T cells 1 (MART-1) is a melanoma-specific antigen, which has been thoroughly studied in the context of immunotherapy against malignant melanoma and which is found only in the pigment cell lineage. However, its exact function and involvement in pigmentation is not clearly understood. Melanoma antigen recognized by T cells 1 has been shown to interact with the melanosomal proteins Pmel17 and OA1. To understand the function of MART-1 in pigmentation, we developed a new knockout mouse model. Mice deficient in MART-1 are viable, but loss of MART-1 leads to a coat color phenotype, with a reduction in total melanin content of the skin and hair. Lack of MART-1 did not affect localization of melanocyte-specific proteins nor maturation of Pmel17. Melanosomes of hair follicle melanocytes in MART-1 knockout mice displayed morphological abnormalities, which were exclusive to stage III and IV melanosomes. In conclusion, our results suggest that MART-1 is a pigmentation gene that is required for melanosome biogenesis and/or maintenance.  相似文献   

19.
20.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号