共查询到20条相似文献,搜索用时 15 毫秒
1.
p21(Cip1) Promotes cyclin D1 nuclear accumulation via direct inhibition of nuclear export. 总被引:7,自引:0,他引:7
Jodi R Alt Andrew B Gladden J Alan Diehl 《The Journal of biological chemistry》2002,277(10):8517-8523
There is increasing evidence that p21(Cip1) and p27(Kip1) are requisite positive regulators of cyclin D1.CDK4 assembly and nuclear accumulation. Both Cip and Kip proteins can promote nuclear accumulation of cyclin D1, but the underlying mechanism has not been elucidated. We now provide evidence that p21(Cip1) promotes the nuclear accumulation of cyclin D1 complexes via inhibition of cyclin D1 nuclear export. In vivo, we demonstrate that p21(Cip1) can inhibit glycogen synthase kinase 3 beta-triggered cyclin D1 nuclear export and phosphorylation-dependent nucleocytoplasmic shuttling. Furthermore, we find that cyclin D1 nuclear accumulation in p21/p27 null cells can be restored through inhibition of CRM1-dependent nuclear export. The ability of p21(Cip1) to inhibit cyclin D1 nuclear export correlates with its ability to bind to Thr-286-phosphorylated cyclin D1 and thereby prevents cyclin D1.CRM1 association. 相似文献
2.
3.
A chicken calmodulin (CaM) gene has been expressed in mouse C127 cells using a bovine papilloma virus (BPV)-based vector (BPV-CM). The vector-borne genes produce a mature mRNA of the expected size that is present on cytoplasmic polyribosomes. In clonal cell lines transformed by BPV-CM, expression of the CaM gene produced CaM levels 2- to 4-fold above those observed in cells transformed by BPV alone. Increased intracellular CaM caused a reduction of cell cycle length that is solely due to a reduction in the length of the G1 phase. A comparison of six cell lines revealed a linear relationship between the intracellular CaM concentration and the rate of G1 progression. These data provide the first evidence that specific elevation of CaM levels directly affects the rate of cell proliferation. 相似文献
4.
5.
6.
Glycogen synthase kinase-3 couples AKT-dependent signaling to the regulation of p21Cip1 degradation. 总被引:5,自引:0,他引:5
Lothar R?ssig Cornel Badorff Yvonne Holzmann Andreas M Zeiher Stefanie Dimmeler 《The Journal of biological chemistry》2002,277(12):9684-9689
Signaling via the phosphoinositide 3-kinase (PI3K)/AKT pathway is crucial for the regulation of endothelial cell (EC) proliferation and survival, which involves the AKT-dependent phosphorylation of the DNA repair protein p21(Cip1) at Thr-145. Because p21(Cip1) is a short-lived protein with a high proteasomal degradation rate, we investigated the regulation of p21(Cip1) protein levels by PI3K/AKT-dependent signaling. The PI3K inhibitors Ly294002 and wortmannin reduced p21(Cip1) protein abundance in human umbilical vein EC. However, mutation of the AKT site Thr-145 into aspartate (T145D) did not increase its protein half-life. We therefore investigated whether a kinase downstream of AKT regulates p21(Cip1) protein levels. In various cell types, AKT phosphorylates and inhibits glycogen synthase kinase-3 (GSK-3). Upon serum stimulation of EC, GSK-3beta was phosphorylated at Ser-9. Site-directed mutagenesis revealed that GSK-3 in vitro phosphorylated p21(Cip1) specifically at Thr-57 within the Cdk binding domain. Overexpression of GSK-3beta decreased p21(Cip1) protein levels in EC, whereas the specific inhibition of GSK-3 with lithium chloride interfered with p21(Cip1) degradation and increased p21(Cip1) protein about 10-fold in EC and cardiac myocytes (30 mm, p < 0.001). These data indicate that GSK-3 triggers p21(Cip1) degradation. In contrast, stimulation of AKT increases p21(Cip1) via inhibitory phosphorylation of GSK-3. 相似文献
7.
Accumulating evidence suggests that p21(Cip1) located in the cytoplasm might play a role in promoting transformation and tumor progression. Here we show that oncogenic H-RasV12 contributes to the loss of actin stress fibers by inducing cytoplasmic localization of p21(Cip1), which uncouples Rho-GTP from stress fiber formation by inhibiting Rho kinase (ROCK). Concomitant with the loss of stress fibers in Ras-transformed cells, there is a decrease in the phosphorylation level of cofilin, which is indicative of a compromised ROCK/LIMK/cofilin pathway. Inhibition of MEK in Ras-transformed NIH3T3 results in restoration of actin stress fibers accompanied by a loss of cytoplasmic p21(Cip1), and increased phosphorylation of cofilin. Ectopic expression of cytoplasmic but not nuclear p21(Cip1) in Ras-transformed cells was effective in preventing stress fibers from being restored upon MEK inhibition and inhibited phosphorylation of cofilin. p21(Cip1) was also found to form a complex with ROCK in Ras-transformed cells in vivo. Furthermore, inhibition of the PI 3-kinase pathway resulted in loss of p21(Cip1) expression accompanied by restoration of phosphocofilin, which was not accompanied by stress fiber formation. These results suggest that restoration of cofilin phosphorylation in Ras-transformed cells is necessary but not sufficient for stress fiber formation. Our findings define a novel mechanism for coupling cytoplasmic p21(Cip1) to the control of actin polymerization by compromising the Rho/ROCK/LIMK/cofilin pathway by oncogenic Ras. These studies suggest that localization of p21(Cip1) to the cytoplasm in transformed cells contributes to pathways that favor not only cell proliferation, but also cell motility thereby contributing to invasion and metastasis. 相似文献
8.
Nuntharatanapong N Chen K Sinhaseni P Keaney JF 《American journal of physiology. Heart and circulatory physiology》2005,289(1):H99-H107
Arsenic exposure is associated with an increased risk of atherosclerosis and vascular diseases. Although endothelial cells have long been considered to be the primary targets of arsenic toxicity, the underlying molecular mechanism remains largely unknown. In this study, we sought to explore the signaling pathway triggered by sodium arsenite and its implication for endothelial phenotype. We found that sodium arsenite produced time- and dose-dependent decreases in human umbilical vein endothelial cell viability. This effect correlated with the induction of p21Cip1/Waf1 (up to 10-fold), a regulatory protein of cell cycle and apoptosis. We also found that arsenite-stimulated EGF (ErbB1) and ErbB2 receptor transactivation, manifest as receptor tyrosine phosphorylation, appeared to be a proximal signaling event leading to p21Cip1/Waf1 induction, because both pharmacological inhibitors and knockdown of receptors by RNA interference blocked arsenite-induced p21Cip1/Waf1 upregulation. Arsenite-induced activation of JNK and p38 MAPK was distinct, with only JNK as a downstream target of the EGF receptor. Moreover, inhibition of JNK with SP-600125 or dominant negative MKK7 inhibited only p21Cip1/Waf1 induction, whereas the p38 MAPK inhibitor SB-203580 or dominant negative MKK4 inhibited both p21Cip1/Waf1 and p53 induction. Functionally, inhibition of p21Cip1/Waf1 induction prevented endothelial apoptosis due to arsenite treatment. Insofar as endothelial dysfunction promotes vascular disease, these data provide a mechanism for the increased incidence of cardiovascular disease due to arsenite exposure. 相似文献
9.
10.
11.
Expression of the CDK inhibitor p21(Cip1) is tightly regulated by signals that control cell division. p21 is an unstable protein that is degraded by the proteasome; however, the pathway that leads to proteasomal degradation of p21 has proven to be enigmatic. An important issue is whether proteasomal degradation of p21 occurs independently of ubiquitylation or, alternatively, whether ubiquitylation on its N terminus is crucial. We resolve this uncertainty by showing that endogenous cellular p21 is completely acetylated at its amino terminus and is therefore not a substrate for N-ubiquitylation. We further show that inactivation of essential components of the ubiquitylation machinery does not directly impact endogenous p21 degradation. Our results underscore the importance of N-acetylation in restricting N-ubiquitylation and show, in particular, that ubiquitylation of endogenous p21 either at internal lysines or on the N terminus is unlikely to control its degradation by the proteasome. 相似文献
12.
13.
14.
Overexpression of p21(cip1) induces cell cycle arrest. Although this ability has been correlated with its nuclear localization, the evidence is not conclusive. The mutants that were used to inhibit its nuclear translocation could no longer bind to several proteins known to interact with the last 25 amino acids of p21(cip1). Here we used point mutation analysis and fusion of the proteins to DsRed to identify which amino acids are essential for the nuclear localization of p21(cip1). We conclude that amino acids RKR(140-142) are essential for nuclear translocation of p21(cip1). While wild-type DsRed-p21 induces cell cycle arrest in 95% of transfected cells, overexpression of cytoplasmatic p21AAA(140-142) arrested only 20% of transfected cells. We conclude that cytoplasmatic p21, with no deletion in the C-terminal region, had a much lower capacity to arrest the cell cycle. 相似文献
15.
16.
17.
M-S Lee J Seo D Y Choi E-W Lee A Ko N-C Ha J Bok Yoon H-W Lee K Pyo Kim J Song 《Cell death and differentiation》2013,20(4):620-629
The molecular mechanisms controlling post-translational modifications of p21 have been pursued assiduously in recent years. Here, utilizing mass-spectrometry analysis and site-specific acetyl-p21 antibody, two lysine residues of p21, located at amino-acid sites 161 and 163, were identified as Tip60-mediated acetylation targets for the first time. Detection of adriamycin-induced p21 acetylation, which disappeared after Tip60 depletion with concomitant destabilization of p21 and disruption of G1 arrest, suggested that Tip60-mediated p21 acetylation is necessary for DNA damage-induced cell-cycle regulation. The ability of 2KQ, a mimetic of acetylated p21, to induce cell-cycle arrest and senescence was significantly enhanced in p21 null MEFs compared with those of cells expressing wild-type p21. Together, these observations demonstrate that Tip60-mediated p21 acetylation is a novel and essential regulatory process required for p21-dependent DNA damage-induced cell-cycle arrest. 相似文献
18.
19.
Gaschott T Wächtershäuser A Steinhilber D Stein J 《Biochemical and biophysical research communications》2001,283(1):80-85
Butyrate, a short-chain fatty acid produced in the colon, as well as its prodrug tributyrin, reduce proliferation and increase differentiation of colon cancer cells. p21(Waf1/Cip1) and p27(Kip1) are negative regulators of cell cycle and are thought to have a key function in the differentiation of various cell lines. We studied the effects of butyrate on differentiation, VDR expression, as well as on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Butyrate induced cell differentiation, which was further enhanced after addition of 1,25-dihydroxycholecalciferol. Synergistic effect of butyrate and dihydroxycholecalciferol in Caco-2 cells was due to butyrate-induced overexpression of VDR. While butyrate as well as dihydroxycholecalciferol increased p21(Waf1/Cip1) and p27(Kip1) expression, in contrast combined exposure of butyrate and dihydroxycholecalciferol resulted in a synergistic amplification of p21(Waf1/Cip1), but not of p27(Kip1) expression. These data imply that butyrate selectively increases p21(Waf1/Cip1) expression via upregulation of VDR in Caco-2 cells. 相似文献
20.
Pim-1 kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its stability and cellular localization in H1299 cells 总被引:1,自引:0,他引:1
Previous studies from our laboratory showed that p21Cip1/WAF1 can be phosphorylated by Pim-1 kinase in vitro, implying that part of the function of Pim-1 might involve influencing the cell cycle. In the present study, site-directed mutagenesis and phosphorylated-specific antibodies were used as tools to identify the sites phosphorylated by Pim-1 and the consequences of this phosphorylation. What we found was that Pim-1 can efficiently phosphorylate p21 on Thr145 in vitro using recombinant protein and in vivo in intact cells. Unexpectedly, we found that Ser146 is a second site that is phosphorylated in vivo, but this phosphorylation event seems to be an indirect result of Pim-1 expression. More importantly, the consequences of phosphorylation of either Thr145 or Ser146 are distinct. When p21 is phosphorylated on Thr145, it localizes to the nucleus and results in the disruption of the association between proliferating cell nuclear antigen and p21. Furthermore, phosphorylation of Thr145 promotes stabilization of p21. On the other hand, when p21 is phosphorylated on Ser146, it localizes primarily in the cytoplasm and the effect of phosphorylation on stability is minimal. Cotransfection of wild-type Pim-1 with p21 increases the rate of proliferation compared with cotransfection of p21 with kinase-dead Pim-1. Knocking down Pim-1 expression greatly decreases the rate of proliferation of H1299 cells and their ability to grow in soft agar. These data suggest that Pim-1 overexpression may contribute to tumorigenesis in part by influencing the cellular localization and stability of p21 and by promoting cell proliferation. 相似文献