首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
S-adenosylhomocysteine hydrolase (SAHH) is the sole enzyme that catalyses the hydrolysis of S-adenosylhomocysteine (SAH) in methylation reaction. Previous studies have shown that its inhibition or deficiency leads to several human disorders such as severe coagulopathy, hepatopathy and myopathy. However, the effects of SAHH on esophageal squamous cell carcinoma (ESCC) cells have not been explored so far. To determine whether SAHH is involved in carcinogenesis of the esophagus, we investigated the expression of SAHH in ESCC and normal esophageal epithelial cells and found that SAHH was downregulated in ESCC cells compared with normal esophageal epithelial cells (P < 0.05). The overexpressed SAHH in ESCC cells promoted cell apoptosis, inhibited cell migration and adhesion, but did not affect the cell proliferation and cell cycle. Furthermore, an interaction of SAHH with receptor of activated C kinase 1 (RACK1) protein was detected by coimmunoprecipitation and an increased RACK1, which is caused by overexpression of SAHH, was verified by Western blotting. The findings mentioned above demonstrate that SAHH can promote apoptosis, inhibit migration and adhesion of ESCC cells suggesting that it may be involved in carcinogenesis of the esophagus.  相似文献   

2.
Li CH  Yu N  Jiang SM  Shangguan XX  Wang LJ  Chen XY 《Planta》2008,228(1):125-136
S-adenosyl-L: -homocysteine hydrolase (SAHH) is a key enzyme for maintenance of cellular transmethylation potential. Although a cytokinin-binding activity had been hypothesized for SAHH, the relation between cytokinin and transmethylation reactions has not been elucidated. Here we show that, of the two Arabidopsis thaliana SAHH genes, AtSAHH1 has a much higher expression level than AtSAHH2. A T-DNA insertion mutant of AtSAHH1 (sahh1-1) and the RNA interference (RNAi) plants (dsAtSAHH2) accumulated a higher level of cytokinins, exhibited phenotypic changes similar to those of cytokinin-overproducers, and their global DNA methylation status was reduced. On the other hand, cytokinins positively regulate the transmethylation pathway genes, including AtSAHH1, AtADK1 (for adenosine kinase), and this regulation involves the cytokinin activity. Furthermore, expression of three cytosine DNA methyltransferase genes examined was inducible by cytokinin treatment. Unlike adenine and adenosine which are SAHH inhibitors, the adenine-type cytokinins have no effect on SAHH activity at protein level. Changing of endogenous cytokinin levels by transgene expression resulted in alterations of DNA methylation status in the sahh1-1 background, suggesting that cytokinins promote DNA methylation, at least under transmethylation stringent conditions. These data demonstrate that the phytohormone cytokinin plays a role in promoting transmethylation reactions, including DNA methylation.  相似文献   

3.
S-Adenosylhomocysteine hydrolase (SAHH) is an NAD+-dependent tetrameric enzyme that catalyzes the breakdown of S-adenosylhomocysteine to adenosine and homocysteine and is important in cell growth and the regulation of gene expression. Loss of SAHH function can result in global inhibition of cellular methyltransferase enzymes because of high levels of S-adenosylhomocysteine. Prior proteomics studies have identified two SAHH acetylation sites at Lys401 and Lys408 but the impact of these post-translational modifications has not yet been determined. Here we use expressed protein ligation to produce semisynthetic SAHH acetylated at Lys401 and Lys408 and show that modification of either position negatively impacts the catalytic activity of SAHH. X-ray crystal structures of 408-acetylated SAHH and dually acetylated SAHH have been determined and reveal perturbations in the C-terminal hydrogen bonding patterns, a region of the protein important for NAD+ binding. These crystal structures along with mutagenesis data suggest that such hydrogen bond perturbations are responsible for SAHH catalytic inhibition by acetylation. These results suggest how increased acetylation of SAHH may globally influence cellular methylation patterns.  相似文献   

4.
We describe an allele of the human glyoxalase GLO locus that encodes an enzymatically inactive form of the protein, which would not have been detected if only circulating erythrocytes and lymphocytes had been studied. The new allele is named GLO*3 and its protein product, GLO 3. Circulating blood cells of GLO*2/GLO*3 heterozygotes have just one electrophoretic band that migrates as the normal 2-2 dimer. Lymphoblastoid cell lines and phytohemagglutinin-stimulated lymphocytes from the same individuals have two electrophoretic bands, one with the mobility of the 2-2 dimer and one with the mobility of the 2-1 dimer that is present in GLO*2/GLO*1 heterozygotes, but a band with the mobility of the 1-1 dimer is not present. Therefore, the GLO*3 allele encodes a monomer that has the electrophoretic mobility of GLO 1 but is enzymatically inactive unless it is combined with normal monomers in 2-3 and 1-3 heterodimers. The failure to detect the GLO 3 protein in red cells and unstimulated lymphocytes is attributed to a relatively great instability or small rate of production in those cells. Consistent with this interpretation is the reduction of GLO activity in red cells of GLO*2/GLO*3 and GLO*1/GLO*3 heterozygotes to 65% or less of that in normal homozygotes and heterozygotes, while the activity of GLO*3 heterozygous lymphoblastoid cells is about 80% of normal. In contrast, the GLO activity of lymphoblastoid cells that had one copy of the GLO locus deleted by γ-irradiation was 50%–60% of normal. Our observations indicate that certain kinds of mutant alleles of the GLO locus, and perhaps other loci, may not be detected in electrophoretic surveys on circulating blood cells only. The segregation of alleles that are not expressed in circulating red and white blood cells could confuse attempts to determine parentage, as they might have in the family described here. The observations also demonstrate the feasibility of mapping human genes by using ionizing radiation to create partial chromosome deletions in cultured cells.  相似文献   

5.
Li M  Li Y  Chen J  Wei W  Pan X  Liu J  Liu Q  Leu W  Zhang L  Yang X  Lu J  Wang K 《Biochemistry》2007,46(41):11451-11458
S-Adenosylhomocysteine hydrolase (SAHH) regulates biomethylation and homocysteine metabolism and thus is an attractive target in drug design studies. SAHH has been shown to be a copper binding protein in vivo; however, the structure and catalytic mechanism of SAHH exclude a role for Cu2+. In the present work, we studied the mechanism of inhibition of SAHH activity by Cu2+. The experimental results showed that Cu2+ inhibited SAHH activity in a noncompetitive manner. Binding of Cu2+ to SAHH resulted in the release of NAD+ cofactors, explaining the loss of the enzymatic activity of SAHH. Further investigation by an ESR probe and computational simulation suggested that Cu2+ could bind at the central channel and interrupt the subunit interactions of SAHH, resulting in a large decrease in affinity to the NAD+ cofactor. This effect of Cu2+ resembled that of enzyme mutations at the C-terminal domain or Asp244 [Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (2000) Effects of site-directed mutagenesis on structure and function of recombinant rat liver S-adenosylhomocysteine hydrolase. Crystal structure of D244E mutant enzyme, J. Biol. Chem. 275, 32147-32156]. The mechanism of action of Cu2+ on SAHH suggested a possible regulative role for Cu2+ on the intracellular activity of SAHH. This could be helpful in understanding the biological effects of copper compounds and suggest a potential coupling mechanism between biomethylation and the redox states of cells.  相似文献   

6.
The level of expression of the enzyme thiopurine methyltransferase (TPMT) is an important determinant of the metabolism of drugs used both in the treatment of acute leukaemia (6-mercaptopurine and 6-thioguanine) and as an immunosuppressant in patients with autoimmune diseases or following organ transplantation (azathioprine). Studies of enzyme activity in red blood cells have shown that TPMT expression displays genetic polymorphism with 11% of individuals having intermediate and one in 300 undetectable levels. Patients with biallelic mutations and undetectable enzyme activity suffer life-threatening myelosuppression when treated with conventional doses of these drugs. Patients with intermediate activity have an increased risk of drug-associated toxicity. In the Caucasian populations studied to date, intermediate activity is associated with mutations at two sites of the TPMT gene, G460A and A719G (designated TPMT*3A), in 80% of cases. Detection of these mutations has, to date, been based on the analysis of restriction digests of PCR products. In order to simplify this process we have investigated the ability of denaturing high pressure liquid chromatography (DHPLC) to detect the A719G mutation. DHPLC of PCR products from 15 known heterozygotes (TPMT*3A/TPMT*1) and 18 known homozygotes (TPMT*1/TPMT*1) gave a clear pattern difference between the groups and 100% concordance with the results of restriction digests. These results suggest DHPLC represents a valuable technique for accurate and rapid detection of pharmacologically important mutations in the TPMT gene.  相似文献   

7.
Wang Y  Zhao B  Zhang S  Qu X 《Bioscience reports》2008,28(3):135-144
A cDNA clone encoding AmphiSAHH [amphioxus SAHH (S-adenosylhomocysteine hydrolase)] protein was isolated from a cDNA library from the gut of Branchiostoma belcheri tsingtaunese. It contained a 1305 bp open reading frame corresponding to a deduced protein of 434 amino acid residues, with a predicted molecular mass of approx. 47.8 kDa. Phylogenetic analysis showed that AmphiSAHH and sea-urchin SAHH joined together and positioned at the base of the vertebrate SAHH clade, suggesting that both AmphiSAHH and sea-urchin SAHH might share some characteristics of the archetype of vertebrate SAHH proteins. The genomic DNA sequence of AmphiSAHH contained eight exons and seven introns, which was similar to B. floridae and sea-urchin SAHH exon/intron organization. Sequence comparison suggested the evolutionary appearance of the ten exon/nine intron organization of SAHH genes after the split of invertebrates and vertebrates, after which it has been highly conserved. AmphiSAHH has been successfully expressed in Escherichia coli and purified. Western blotting confirmed that the enzyme has a native molecular mass of approx. 48 kDa, and the catalytic activities and NAD(+)/NADH binding affinity of recombinant AmphiSAHH were measured. Immunohistochemistry analysis showed that SAHH was strongly expressed in hepatic caecum, gill, spermary and ovary of amphioxus.  相似文献   

8.
The acid phosphatase locus (ACP1) is a classical polymorphism that has been surveyed in hundreds of human populations worldwide. Among individuals of European ancestry, the ACP1*C allele occurs with an average frequency of approximately 0.05, whereas it is nearly absent in all other human populations. It has been hypothesized that this allele is maintained by overdominant selection among European populations. Here, we analyze ACP1 protein polymorphism data from more than 50,000 individuals previously surveyed in 67 populations across Europe as well as inheritance data from more than 6,000 European parent-offspring pairs to assess the signature of natural selection currently acting on this allele. Although we see a significant excess of ACP1*C heterozygotes relative to Hardy-Weinberg expectations, we find no evidence that natural selection favors ACP1*C heterozygotes. Instead, ACP1*C appears to have a strongly deleterious and recessive fitness effect. We observed only 48.9% of expected homozygous offspring from heterozygous parents and significantly fewer homozygotes than expected within populations. Because parent-offspring pairs indicate a significant deficiency of ACP1*C homozygotes, we infer that viability selection is acting on ACP1*C homozygotes very early in life, perhaps before birth. We estimate that approximately 1.2% of all couples of European ancestry are composed of individuals who both carry the APC1*C allele. As such, selection against ACP1*C homozygotes may represent a nonnegligible contribution to the overall number of spontaneous abortions among women of European ancestry and may cause substantial fertility reductions among some combinations of parental genotypes.  相似文献   

9.
Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency   总被引:12,自引:0,他引:12  
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138G-->A, 561G-->A, 708G-->A) and two associated with ITPase deficiency (94C-->A, IVS2+21A-->C). Homozygotes for the 94C-->A missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94C-->A heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21A-->C homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94C-->A (allele frequency: 0.06), 24 were heterozygotes for IVS2+21A-->C (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21A-->C heterozygotes and 94C-->A/IVS2+21A-->C compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.  相似文献   

10.
Appreciable beta hexosaminidase A (hex A) activity has been detected in cultured skin fibroblasts and melanoma tissue from healthy individuals previously reported as having deficiency of hex A activity indistinguishable from that of patients with Tay-Sachs disease (TSD). Identification and quantitation of hex A, amounting to 3.5%-6.9% of total beta hexosaminidase activity, has been obtained by cellulose acetate gel electrophoresis, DEAE-cellulose ion-exchange chromatography, radial immunodiffusion, and radioimmunoassay. Previous family studies suggested that these individuals may be compound heterozygotes for the common mutant TSD gene and a rare (allelic) mutant gene. Thus, the postulated rate mutant gene appears to code for the expression of low amounts of hex A. Heterozygotes for the rare mutant may be indistinguishable from heterozygotes for the common TSD mutant. However, direct visualization and quantitation of hex A by the methods described may prevent false-positive prenatal diagnosis of TSD in fetuses having the incomplete hex A deficiency of the type described in the four healthy individuals.  相似文献   

11.
Patients with 2,8-dihydroxyadenine urolithiasis are either completely or partially deficient in adenine phosphoribosyltransferase activities. Patients with partial enzyme deficiencies, all of whom have been found among Japanese, are homozygotes having a unique mutant adenine phosphoribosyltransferase gene (APRT*J) in double dose (Japanese type deficiency). We have established B-cell lines from heterozygotes and homozygotes of complete and Japanese type adenine phosphoribosyltransferase deficiencies as well as normal individuals. Characterization of the cell lines indicated that all homozygous cells were deficient in adenine phosphoribosyltransferase function while all heterozygous and normal cells had functional adenine phosphoribosyltransferase.  相似文献   

12.
A large family is reported with familial hepatic triglyceride lipase (HTGL) deficiency and with the coexistence of reduced lipoprotein lipase (LPL) similar to the heterozygote state of LPL deficiency. The proband was initially detected because of hypertriglyceridemia and chylomicronemia. He was later demonstrated to have beta-VLDL despite an apo E3/E3 phenotype and the lack of stigmata of type III hyperlipoproteinemia. The proband had no HTGL activity in postheparin plasma. Two of his half-sisters had very low HTGL activity (39 and 31 nmol free fatty acids/min/ml; normal adult female greater than 44). His son and daughters had decreased HTGL activity (normal male and preadolescent female greater than 102), which would be expected in obligate heterozygotes for HTGL deficiency. Low HTGL activity was associated with LDL particles which were larger and more buoyant. Several family members, including the proband, had reduced LPL activity and mass less than that circumscribed by the 95% confidence-interval ellipse for normal subjects and had hyperlipidemia similar to that described in heterozygote relatives of patients with LPL deficiency. All the sibs with hyperlipidemia had a reduced LPL activity and mass, while subjects with isolated reduced HTGL (with normal LPL activity) had normal lipid phenotypes. Analysis of genomic DNA from these subjects by restriction-enzyme digestion revealed no major abnormalities in the structure of either the HTGL or the LPL gene. Compound heterozygotes for HTGL and LPL deficiency show lipoprotein physiological characteristics typical for HTGL deficiency, while their variable lipid phenotype is typical for LPL deficiency.  相似文献   

13.
Thiopurine methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs such as 6-mercaptopurine, 6-thioguanine, and azathiopurine. Several mutations in the TPMT gene have been identified which correlate with a low activity phenotype. The molecular basis for the genetic polymorphism of TPMT has been established for European Caucasians, African-Americans, Southwest Asians and Chinese, but it remains to be elucidated in Japanese populations. The frequency of the four allelic variants of the TPMT gene, TPMT*2 (G238C), TPMT*3A (G460A and A719G), TPMT*3B (G460A) and TPMT*3C (A719G) were determined in Japanese samples (n=192) using polymerase chain reaction (PCR)-RFLP and allele-specific PCR-based assays. TPMT*3C was found in 0.8% of the samples (three heterozygotes). The TPMT*2, TPMT*3A and TPMT*3B alleles were not detected in any of the samples analyzed. This study provides the first analysis of TPMT mutant allele frequency in a sample of Japanese population and indicates that TPMT*3C is the most common allele in Japanese subjects.  相似文献   

14.
The identification of mutations in ABCA1 in patients with Tangier disease and familial HDL deficiency demonstrated that inadequate transport of phospholipid and cholesterol to the extracellular space results in the hypercatabolism of lipid-poor nascent HDL particles. However, the relationship between changes in ABCA1 activity and HDL levels is not clear. To address this question directly in vivo, we have used bacterial artificial chromosome transgenic approaches, which allow for appropriate developmental and cellular localization of human ABCA1 in mouse tissues. Increased expression of ABCA1 is directly associated with an increase in HDL levels, and the relationship between the increase in efflux and HDL is completely linear (r2 = 0.87). Preliminary data have suggested that coronary artery disease (CAD) is increased in heterozygotes for ABCA1 deficiency. These results may have been biased by clinical sampling, and CAD end points are insensitive markers. We have now used surrogate end points of intima-media complex thickness (IMT) and have shown that mean IMT in ABCA1 heterozygotes is indeed increased. A strong correlation between adjusted IMT and HDL cholesterol values and apolipoprotein A-I-driven efflux has been established. These studies suggest that compromised ABCA1 activity leads to accelerated and early atherogenesis and provides a link between the cholesterol deposition in macrophages within the arterial wall and cholesterol efflux in humans.  相似文献   

15.
S-adenosylhomocysteine hydrolase (SAHH) is a key regulator of S-adenosylmethionine-dependent methylation reactions and an interesting pharmacologic target. We cloned the SAHH gene from Plasmodium falciparum (PfSAHH), with an amino acid sequence agreeing with that of the PlasmoDB genomic database. Even though the expressed recombinant enzyme, PfSAHH, could use 3-deaza-adenosine (DZA) as an alternative substrate in contrast to the human SAHH, it has a unique inability to substitute 3-deaza-(+/-)aristeromycin (DZAri) for adenosine. Among the analogs of DZA, including neplanocin A, DZAri was the most potent inhibitor of the PfSAHH enzyme activity, with a K(i) of about 150 nM, whether Ado or DZA was used as a substrate. When the same DZA analogs were tested for their antimalarial activity, they also inhibited the in vitro growth of P. falciparum parasites potently. Homology-modeling analysis revealed that a single substitution (Thr60-Cys59) between the human and malarial PfSAHH, in an otherwise similar SAH-binding pocket, might account for the differential interactions with the nucleoside analogs. This subtle difference in the active site may be exploited in the development of novel drugs that selectively inhibit PfSAHH. We performed a comprehensive phylogenetic analysis of the SAHH superfamily and inferred that SAHH evolved in the common ancestor of Archaea and Eukaryota, and was subsequently horizontally transferred to Bacteria. Additionally, an analysis of the unusual and uncharacterized AHCYL1 family of the SAHH paralogs extant only in animals reveals striking divergence of its SAH-binding pocket and the loss of key conserved residues, thus suggesting an evolution of novel function(s).  相似文献   

16.
E1 mice are an animal model of human epilepsy (idiopathic complex partial seizures). We have previously demonstrated abrupt poly(A)(+) RNA expression in liver from 1-day-old E1 mouse [Mita et al., 1991. Devl. Brain Res. 64, 27-35]. In the present study, we constructed a cDNA library of the poly(A)(+) RNA. By analyzing cDNA clones and nucleotide sequences, we found a clone that was homologous to a rat gene of S-adenosyl-L-homocysteine hydrolase (EC 3.3.1.1.) (SAHH) (a key enzyme in the active methyl transfer pathway) and showed the gene polymorphism/RFLP(PstI) between the epileptic strain, E1, and the non-epileptic mother strain, ddY, as indicated in a gel electrophoresis by cleaving 2.6 kb with PstI into 1.9 kb and 0.7 kb fragment bands. F1(E1xddY) showed the heterozygosity. An attempt to determine the mutation on the genomic SAHH gene in the E1 disclosed a single nucleotide polymorphism indicated by a C-->T transition in the 8th intron, by which the PstI site was created. SAHH enzymatic activity in the liver in 1-day-old E1 mice was slight (approximately 10%), and in fact was significantly lower than that of the control ddY. Results suggested that the abrupt primary mRNA transcribed on the SAHH gene in the liver of 1-day-old E1 mice was processed partially or incompletely because of the presence of the point mutation in the intron. Accordingly, poor energy supply by the insufficient SAHH enzymatic activity in the brain postnatally may be responsible for epileptogenesis in this animal model. It is concluded that a single nucleotide SAHH gene polymorphism may be associated with epilepsy in E1 mice.  相似文献   

17.
Congenital nonspherocytic haemolytic anaemia (HA) in dogs of the Basenji breed is inherited as a simple, autosomal recessive trait. Previous results of pyruvate kinase (PK) assays suggest a causal relationship between the anaemia and PK deficiency in erythrocytes. In the present investigation assays of this enzyme have been performed on haemolysates from 45 Basenji dogs, comprising 3 anaemic and 42 non-anaemic individuals of which 13 were known heterozygotes. The PK activity in haemolysates from the 42 non-anaemic dogs exhibited a bimodal distribution corresponding to the genotypic classes: heterozygotes and normal homozygotes. The results indicate that heterozygotes have a partial, detectable enzyme deficiency, not reflected in clinical disease, and thus give evidence of a gene dosage effect in agreement with observations in man. The proposed genotypes PK PK, PK pk and pk pk refer to normal homozygotes, heterozygotes, and anaemic individuals, respectively. The findings strengthen the genetic hypothesis of recessiveness of the anaemia by direct detection of heterozygosity of parents of affected individuals. Moreover, the results are of value in comparative studies and they have practical application in connection with eradication programmes.  相似文献   

18.
Studies have been conducted on eight sets of monozygous and nine sets of dizygous female Negro twins, both members of whom were heterozygous for G-6-PD deficiency. Twins were studied both by assay of erythrocytic G-6-PD activity and by the methemoglobin elution test (MET). The MET is a procedure which identifies histochemically cells with appreciable G-6-PD activity and permits accurate determination of the percentage of such cells in heterozygotes. Monozygous twins showed significantly less within-pair variation than dizygous twins with both the MET and G-6-PD assay.Concerning the significantly greater agreement in MET results in monozygous twins than dizygous twins, our present working hypothesis is that X-chromosomal inactivation in the Negro female is genetically controlled, rather than random. However, certain alternate hypotheses allowing for random X-inactivation have not been excluded; these include somatic cell selection after random X-inactivation, and cell exchange between identical twins in utero/it. Studies in nontwin related heterozygotes now underway should help differentiate among these various possibilities.In addition to the studies on 17 pairs of female twins heterozygous for G-6-PD deficiency, 26 pairs of nondeficient female Negro twins have been studied by G-6-PD assay. Within-pair variation in monozygous twins was significantly less than within-pair variation in dizygous twins in all cases. The genetic influences detected with the G-6-PD assay in the female twins could theoretically be due to nonrandom X-inactivation, to genetically determined quantitative differences in enzyme activity (e.g., isoalleles), or to both. By appropriate calculations, based on the MET results, we have factored out the effects of X-inactivation on overall enzyme activity in the heterozygous deficient twins. After removal of the effect of X-inactivation, monozygous twins heterozygous for enzyme deficiency continue to show significantly less within-pair variation than dizygous twins. This finding indicates significant genetic influences on quantitative G-6-PD activity other than X-inactivation and other than the deficiency allele. This conclusion has been strengthened by studies on male twins where X-inactivation is not present.Supported by USPHS research grants AM-09381, HE-17544, AM-09919, and HE-03341, by USPHS Career Development Award 1-K3-AM-7959 (Dr. Brewer) and by U.S.A.E.C. Contract (11-1)-1552.  相似文献   

19.
Summary Genetic polymorphism of S-adenosylhomocysteine hydrolase (SAHH) was investigated in a total of 214 red blood cell samples from unrelated Japanese using the starch gel electrophoresis and the enzyme-specific staining procedures. Three common phenotypes were observed which corresponded to SAHH 1, SAHH 2-1, and SAHH 2, controlled by two alleles, SAHH*1 and SAHH*2. The estimated gene frequencies of SAHH*1 and SAHH*2 in Japanese were 0.953 and 0.047, respectively. This result was not different from European samples reported by Bissbort et al. (1983).  相似文献   

20.
Holstein-Friesian cattle heterozygous for the deficiency of uridine monophosphate (UMP) synthase have half-normal activity of UMP synthase. The homozygous recessive genotype would result in little or no activity, has not been observed among live animals and apparently leads to embryonic mortality at approximately Day 40 of gestation. Activity of UMP synthase averaged 2.74 +/- 0.61 units/mg protein for 19 obligatory normal embryos (from normal x normal matings). Activity for 18 embryos from heterozygote x heterozygote matings yielded three non-overlapping groups as follows: (i) five presumed normals with greater than two-thirds normal activity, (ii) ten apparent heterozygotes with one-third to two-thirds normal activity and (iii) three putative homozygous recessive embryos with less than one-third normal activity. The distribution among these groups was consistent with the 1:2:1 ratio expected for autosomal inheritance. Conception of embryos homozygous recessive for this disorder was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号