首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila segmentation gene paired, whose product is homologous to the Drosophila Gooseberry and mammalian Pax3 proteins, has three general functions: proper development of the larval cuticle, survival to adulthood and male fertility. Both DNA-binding domains, the conserved N-terminal paired-domain and prd-type homeodomain, are required within the same molecule for all general paired functions, whereas a conserved His-Pro repeat located near its C terminus is a transactivation domain potentiating these functions. The C-terminal moiety of Paired includes two additional functional motifs: one, also present in Gooseberry and Pax3, is required for segmentation and cuticle development; the other, retained only in Gooseberry, is necessary for survival. The male fertility function, which cannot be replaced by Gooseberry and Pax3, is specified by the conserved N-terminal rather than the divergent C-terminal moiety of Paired. We conclude that the functional diversification of paired, gooseberry and Pax3, primarily determined by variations in their enhancers, is modified by adaptations of their coding regions as a necessary consequence of their newly acquired spatiotemporal expression.  相似文献   

2.
The male accessory gland substance is shown to be involved in the fertility of eggs for the first time in Aedes aegypti and Culex pipiens fatigans. Surgical removal of the paired accessory glands of males did not impair their mating ability. However, the eggs laid by the females after mating with operated males were found to be sterile. This condition could be reversed if the accessory gland substance was later received by the females. Evidence suggests that the accessory gland substance is essential for fertilization.  相似文献   

3.
4.
Liu W  Xue L 《PloS one》2012,7(1):e30980
The Drosophila Pax gene gooseberry (gsb) is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.  相似文献   

5.
Gap junctional communication in the male reproductive system   总被引:7,自引:0,他引:7  
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.  相似文献   

6.
Abstract The ultrastructure of unicellular accessory glands (= prostate glands) and external male ducts of the cestode Cylindrotaenia hickmaniare described. Accessory glands open into the lumen of the external common sperm duct (= external vas deferens). The gland cells contain abundant endoplasmic reticulum, Golgi bodies and secretory bodies, and have elongate necks that pierce the apical cytoplasm of the duct. Cell contact with the apical cytoplasm of the sperm duct is mediated by septate desmosomes. Accessory glands secrete spherical particles, with a diameter of approximately 70 nm, that adhere to spermatozoa. The roles of these accessory glands may relate to activity of the sperm or development of the female system after insemination. Paired sperm ducts arise from testes, and unite to form a common sperm duct. Each duct consists of a tubular anucleate cytoplasmic region which is supported by nucleated cytons that lie sunken in the parenchyma. The apical cytoplasm of the paired sperm ducts (= vasa efferentia) possesses apical microvilli and abundant mitochondria, but few other cytoplasmic features. The apical cytoplasm of the common sperm duct possesses sparse apical microvilli and numerous electronlucent vesicles. The male gonoducts form an elongate syncytium which is markedly polarized along the length of the ducts. The ducts also display apical–basal polarity in that sunken nucleated cytons support the apical cytoplasm which in turn has distinct basal and apical domains.  相似文献   

7.
Insect steroid hormones (ecdysteroids) are important for female reproduction in many insect species and are required for the initiation and coordination of vital developmental processes. Ecdysteroids are also important for adult male physiology and behavior, but their exact function and site of synthesis remains unclear, although previous studies suggest that the reproductive system may be their source. We have examined expression profiles of the ecdysteroidogenic Halloween genes, during development and in adults of the flour beetle Tribolium castaneum. Genes required for the biosynthesis of ecdysone (E), the precursor of the molting hormone 20-hydroxyecdysone (20E), are expressed in the tubular accessory glands (TAGs) of adult males. In contrast, expression of the gene encoding the enzyme mediating 20E synthesis was detected in the ovaries of females. Further, Spookiest (Spot), an enzyme presumably required for endowing tissues with competence to produce ecdysteroids, is male specific and predominantly expressed in the TAGs. We also show that prothoracicotropic hormone (PTTH), a regulator of E synthesis during larval development, regulates ecdysteroid levels in the adult stage in Drosophila melanogaster and the gene for its receptor Torso seems to be expressed specifically in the accessory glands of males. The composite results suggest strongly that the accessory glands of adult male insects are the main source of E, but not 20E. The finding of a possible male-specific source of E raises the possibility that E and 20E have sex-specific roles analogous to the vertebrate sex steroids, where males produce primarily testosterone, the precursor of estradiol. Furthermore this study provides the first evidence that PTTH regulates ecdysteroid synthesis in the adult stage and could explain the original finding that some adult insects are a rich source of PTTH.  相似文献   

8.
Sanders C  Smith DP 《PloS one》2011,6(8):e24151
In animals, male fertility requires the successful development of motile sperm. During Drosophila melanogaster spermatogenesis, 64 interconnected spermatids descended from a single germline stem cell are resolved into motile sperm in a process termed individualization. Here we identify a putative double-stranded RNA binding protein LUMP that is required for male fertility. lump(1) mutants are male-sterile and lack motile sperm due to defects in sperm individualization. We show that one dsRNA binding domains (dsRBD) is essential for LUMP function in male fertility. These findings reveal LUMP is a novel factor required for late stages of male germline differentiation.  相似文献   

9.
Using light and scanning electron microscopy, the internal male and female reproductive anatomy of the praying mantid Ciulfina klassi is identified and described. This is the first detailed study to investigate the internal reproductive morphology of any Mantodea. The female structures identified were (1) paired ovaries with primitive panoistic type ovarioles, (2) a single blind-ended spermatheca with secretory gland cells and surrounding layer of striated muscle, and (3) female accessory glands associated with the production of the ootheca (the egg casing). The male structures identified were (1) paired multi-tubular testes, in which different stages of spermatogenesis were observed, (2) tubular vasa deferentia, (3) seminal vesicles, (4) male accessory glands and (5) a single muscular ejaculatory duct. Knowledge of basic reproductive morphology can be used to infer function and so provide key information for future research into reproductive behavior and physiology in the Mantodea.  相似文献   

10.
The role of the female accessory reproductive glands has been investigated in relatively few insects. Gland secretion has a number of potential functions, including lubrication during copula, involvement in fertilization and protection of eggs. Female yellow dung flies (Scathophaga stercoraria) have large paired accessory glands whose function(s) prior to this study were unknown. Our study indicated glands were involved in copulation and egg laying. The volume of secretion remaining in glands was negatively associated with copulation duration, and this effect was most pronounced in non-ovipositing females. Gland volume and secretion volume remaining in the glands were significantly smaller in females which were allowed to oviposit. In addition, there was a significant interaction between male size, female size and whether or not females were allowed to oviposit which affected the volume of the secretion remaining in the glands, with changes in secretion volume being greatest when males were large. Sperm were found in the accessory glands of some females and this was apparently not related to age, mating history of either sex, to female nutrition or male size. Our results indicate that either large males stimulate greater secretory responses from females or that females alter their responses based on male size.  相似文献   

11.
12.
Male reproductive glands secrete signals into seminal fluid to facilitate reproductive success. In Drosophila melanogaster, these signals are generated by a variety of seminal peptides, many produced by the accessory glands (AGs). One epithelial cell type in the adult male AGs, the secondary cell (SC), grows selectively in response to bone morphogenetic protein (BMP) signaling. This signaling is involved in blocking the rapid remating of mated females, which contributes to the reproductive advantage of the first male to mate. In this paper, we show that SCs secrete exosomes, membrane-bound vesicles generated inside late endosomal multivesicular bodies (MVBs). After mating, exosomes fuse with sperm (as also seen in vitro for human prostate-derived exosomes and sperm) and interact with female reproductive tract epithelia. Exosome release was required to inhibit female remating behavior, suggesting that exosomes are downstream effectors of BMP signaling. Indeed, when BMP signaling was reduced in SCs, vesicles were still formed in MVBs but not secreted as exosomes. These results demonstrate a new function for the MVB–exosome pathway in the reproductive tract that appears to be conserved across evolution.  相似文献   

13.
14.
The seasonal chronology of the events of the reproductive cycle, and changes in the structure and function of the primary and accessory organs of the male bent-winged bat, Miniopterus schreibersii, were studied at latitude 37 degrees S in temperate southeastern Australia. The testicular cycle commenced in late spring (November), and sperm appeared in the seminiferous tubules and epididymides in early fall (March). The cycle of the accessory sex gland complex generally paralleled the testicular cycle, reaching maximum hypertrophy at the time of insemination in late fall (April/May). Thereafter, the primary and secondary sex glands (except the ampullary gland) involuted as the animals entered winter torpor. However, a cauda epididymal store of sperm persisted until late spring, and sperm were often observed, as well, in the ampullary gland duct and alveoli throughout winter. This study has confirmed that male Miniopterus differs from other vespertilionids in that accessory gland activity declines following the fall breeding in keeping with the fact that, unlike in other vespertilionids, insemination, ovulation and conception are concurrent events in the fall in this species. The reduced secretory status of the Leydig cells and exceptionally low levels of circulating androgens throughout the year, in combination with the presence of viable epididymidal sperm for most of gestation, are all interesting features of this reproductive cycle.  相似文献   

15.
The function of the reproductive accessory glands has not before been investigated. Their prominence arouses interest in their possible function. A preliminary histological, histochemical, and biochemical analysis has been undertaken in order to start to answer this question. No definite conclusions can, however, be made from the results obtained. From evidence accumulated on the behaviour of the sexes and the peaks of secretion production it seems likely that the product of the female glands would be used to coat the eggs with a colleterial substance. The male Geophilomorpha, Scolopendromorpha, and Lithobiomorpha all spin webs on which they place a spermatophore during courtship, and all three groups possess two well developed pairs of accessory glands which may be responsible for the production of web material. The Scutigeromorpha, on the other hand, only possess a single vestigeal pair of glands and do not spin a web. It is suggested that the accessory glands of the male produce web material although this still remains unproven.  相似文献   

16.
In the male germline of Drosophila the transformer-2 protein is required for differential splicing of pre-mRNAs from the exuperantia and att genes and autoregulates alternative splicing of its own pre-mRNA. Autoregulation of TRA-2 splicing results in production of two mRNAs that differ by the splicing/retention of the M1 intron and encode functionally distinct protein isoforms. Splicing of the intron produces an mRNA encoding TRA-2(226), which is necessary and sufficient for both male fertility and regulation of downstream target RNAs. When the intron is retained, an mRNA is produced encoding TRA-2(179), a protein with no known function. We have previously shown that repression of M1 splicing is dependent on TRA-2(226), suggesting that this protein quantitatively limits its own expression through a negative feedback mechanism at the level of splicing. Here we examine this idea, by testing the effect that variations in the level of tra-2 expression have on the splicing of M1 and on male fertility. Consistent with our hypothesis, we observe that as tra-2 gene dosage is increased, smaller proportions of TRA-2(226) mRNA are produced, limiting expression of this isoform. Feedback regulation is critical for male fertility, since it is significantly decreased by a transgene in which repression of M1 splicing cannot occur and TRA-2(226) mRNA is constitutively produced. The effect of this transgene becomes more severe as its dosage is increased, indicating that fertility is sensitive to an excess of TRA-2(226). Our results suggest that autoregulation of TRA-2(226) expression in male germ cells is necessary for normal spermatogenesis.  相似文献   

17.
The male reproductive tract and accessory glands comprise a complex but interrelated system of tissues that are composed of many distinct cell types, all of which contribute to the ability of spermatozoa to carry out their ultimate function of fertilizing an oocyte. Spermatozoa undergo their final steps of maturation as they pass through the male excurrent duct, which includes efferent ducts, the epididymis and the vas deferens. The composition of the luminal environment in these organs is tightly regulated. Major fluid reabsorption occurs in efferent ducts and in the epididymis, and leads to a significant increase in sperm concentration. In the distal epididymis and vas deferens, fluid secretion controls the final fluidity of the luminal content. Therefore, the process of water movement in the excurrent duct is a crucial step for the establishment of male fertility. Aquaporins contribute to transepithelial water transport in many tissues, including the kidney, the brain, the eye and the respiratory tract. The present article reviews our current knowledge regarding the distribution and function of aquaporins in the male excurrent duct.  相似文献   

18.
The male reproductive tract and accessory glands comprise a complex but interrelated system of tissues that are composed of many distinct cell types, all of which contribute to the ability of spermatozoa to carry out their ultimate function of fertilizing an oocyte. Spermatozoa undergo their final steps of maturation as they pass through the male excurrent duct, which includes efferent ducts, the epididymis and the vas deferens. The composition of the luminal environment in these organs is tightly regulated. Major fluid reabsorption occurs in efferent ducts and in the epididymis, and leads to a significant increase in sperm concentration. In the distal epididymis and vas deferens, fluid secretion controls the final fluidity of the luminal content. Therefore, the process of water movement in the excurrent duct is a crucial step for the establishment of male fertility. Aquaporins contribute to transepithelial water transport in many tissues, including the kidney, the brain, the eye and the respiratory tract. The present article reviews our current knowledge regarding the distribution and function of aquaporins in the male excurrent duct.  相似文献   

19.
The annual reproductive cycle of the male little brown bat, in contrast to seasonal reproductive patterns of other mammals, is differentiated by an asynchronous recrudescence of the testis and the accessory reproductive glands. Spermatogenesis occurs during the summer, whereas fully stimulated accessory organs, stored epididymal spermatozoa, and sexual behavior are expressed later during a mating period that extends, albeit interrupted by hibernation, from late summer until early spring. To investigate whether changes in high affinity androgen-binding activity in the circulation are related to the delayed renewal of the accessory organs, plasma sex steroid-binding protein (SBP) and total testosterone (T) levels were measured throughout the year. From these data and determinations of association constants for T binding to SBP and albumin at both hibernating (4 degrees C) and active (40 degrees C) temperatures, estimates of the unbound ("free") and albumin-bound T fractions were made and correlated with changes in the accessory reproductive organs. Plasma SBP concentrations (mean +/- SEM) exhibited wide seasonal fluctuations: they were baseline in May (10 +/- 2 nM) following spring arousal, increased dramatically in June (184 +/- 24 nM), and reached peak levels in early July (262 +/- 29 nM), where they remained until August. In late August they began to fall (104 +/- 23 nM) and then returned to baseline during the hibernation period (October-April). Although total T levels were also elevated in June, it appeared that the unbound ("free") and the unbound plus albumin-bound T fractions did not increase until late July. Since the accessory gland weights did not begin to increase until late July as well, it was concluded that increases in the unbound and albumin-bound T fractions may be an important factor in the recrudescence of the accessories and that increased SBP activity in early summer may play a role in the regression and delayed renewal of these organs. However, what factor(s) maintain the accessory glands, epididymal spermatozoa, and sexual behavior during the breeding and hibernation periods when all T fractions were low are, as yet, undetermined.  相似文献   

20.
Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae) is a serious insect pest of litchi and longan in South China. When disturbed, this insect could release large quantities of disagreeable odorous volatiles from its scent gland. Knowledge on the scent gland and its secretion is crucial for developing the semiochemical methods to manage this pest. Morphology and ultrastructure of the metathoracic scent glands (MTGs) were studied under stereo and scanning electron microscopy, and the volatile compounds of MTGs from both male and female T. papillosa were analyzed with coupled gas chromatography?Cmass spectrometry (GC?CMS). The MTG complex is located between the metathorax and the first abdominal segment at the ventral surface of the insect, which has a well-developed single double valve cystic-shaped orange median reservoir, paired colorless lateral glands in both sides, and a long and wavy tubular accessory gland that inlays tightly into the ventral edge around the median reservoir. The MTG opens to the body surface through paired ostioles located between the meso- and metacoxae of the evaporatorium with mushroom bodies. The GC?CMS analyses showed that female and male adults have nine major volatile components in common. Tridecane is the most abundant in both females and males, reaching up to 47.1% and 51.8% of relative amount, respectively. The minor component is benzophenone with only 0.28% and 0.14%. Furthermore, undecane, tetradecane, 3-methyl-tridecane, and cyclopentadecane were found only in males. The possible function of volatile compounds of MTG contents in T. papillosa is addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号