首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both wild-type (WT) and nonconducting W472F mutant (NCM) Kv1.5 channels are able to conduct Na(+) in their inactivated states when K(+) is absent. Replacement of K(+) with Na(+) or NMG(+) allows rapid and complete inactivation in both WT and W472F mutant channels upon depolarization, and on return to negative potentials, transition of inactivated channels to closed-inactivated states is the first step in the recovery of the channels from inactivation. The time constant for immobilized gating charge recovery at -100 mV was 11.1 +/- 0.4 ms (n = 10) and increased to 19.0 +/- 1.6 ms (n = 3) when NMG(+)(o) was replaced by Na(+)(o). However, the decay of the Na(+) tail currents through inactivated channels at -100 mV had a time constant of 129 +/- 26 ms (n = 18), much slower than the time required for gating charge recovery. Further experiments revealed that the voltage-dependence of gating charge recovery and of the decay of Na(+) tail currents did not match over a 60 mV range of repolarization potentials. A faster recovery of gating charge than pore closure was also observed in WT Kv1.5 channels. These results provide evidence that the recovery of the gating elements is uncoupled from that of the pore in Na(+)-conducting inactivated channels. The dissociation of the gating charge movements and the pore closure could also be observed in the presence of symmetrical Na(+) but not symmetrical Cs(+). This difference probably stems from the difference in the respective abilities of the two ions to limit inactivation to the P-type state or prevent it altogether.  相似文献   

2.
We characterized the effects of intracellular Mg2+ (Mg2+i) on potassium currents mediated by the Kv1.5 and Kv2.1 channels expressed in Xenopus oocytes. Increase in Mg2+i caused a voltage-dependent block of the current amplitude, apparent acceleration of the current kinetics (explained by a corresponding shift in the steady-state activation) and leftward shifts in activation and inactivation dependencies for both channels. The voltage-dependent block was more potent for Kv2.1 [dissociation constant at 0 mV, Kd(0), was ~70 mM and the electric distance of the Mg2+ binding site, , was 0.2] than for the Kv1.5 channel [Kd(0)~40 mM and =0.1]. Similar shifts in the voltage-dependent parameters for both channels were described by the Gouy-Chapman formalism with the negative charge density of 1 e/100 Å2. Additionally, Mg2+i selectively reduced a non-inactivating current and increased the accumulation of inactivation of the Kv1.5, but not the Kv2.1 channel. A potential functional role of the differential effects of Mg2+i on the Kv channels is discussed.  相似文献   

3.
乙醇对大鼠心肌动作电位及人Kv1.5通道的影响   总被引:1,自引:0,他引:1  
Hu H  Zhou J  Sun Q  Yu XJ  Zhang HL  Ma X  Liu CH  Zang WJ 《生理学报》2011,63(3):219-224
为了研究乙醇对心肌动作电位的作用及其机制,本实验采用标准玻璃微电极细胞内记录技术记录离体大鼠心肌细胞的动作电位(action potential,AP),采用全细胞膜片钳技术记录HEK293细胞上表达的人Kv1.5(human Kv1.5,hKv1.5)通道电流,观察6.25、12.5、25.0、50.0、100.0及...  相似文献   

4.
脑胶质瘤是原发性颅内恶性肿瘤。患者的5年存活率不足1%。目前,除手术切除外,尚无有效的治疗手段。近年来发现,脑胶质瘤发病可能与多种钾离子通道的异常表达有关。自噬是膜包裹部分胞质和细胞内需降解的蛋白质、细胞器,并与溶酶体一起降解其所包裹内容物的生理过程。诱导胶质瘤细胞的自噬,促进其凋亡是肿瘤治疗的一种新策略。本室前期研究发现,电压依赖型钾通道1.5(Kv1.5)参与胞膜小窖标志蛋白质(caveolae,Cav-1)介导的多种肿瘤细胞的增殖和凋亡,但是否参与胶质瘤细胞的自噬并不清楚。本文首先利用不同浓度的K+通道阻断剂四乙胺(tetra-ethylammonium,TEA)、Kv通道阻断剂四氨基吡啶(4-amino-pyridine,4-AP)和Kv1.5通道特异性阻断剂DPO-1(diphenyl phosphine oxide-1)分别在不同时间,作用于人脑胶质瘤细胞U251,观察其对细胞存活的影响。发现DPO-1对U251细胞具有双向作用:低浓度促进存活,高浓度抑制存活。其中,1 mmol/L DPO-1处理6 h,可促进自噬相关蛋白质LC3的表达,而抑制mTOR信号蛋白质的磷酸化水平,表明Kv1.5通道可能参与胶质瘤细胞的自噬。然后,利用基因转染技术分别敲低和过表达Kv1.5通道的蛋白质水平,发现敲低Kv1.5通道蛋白,促进胶质瘤细胞的自噬,激活ERK信号通路,而过表达Kv1.5通道蛋白,则抑制胶质瘤细胞的自噬。进一步利用流式细胞技术观察细胞凋亡,发现改变Kv1.5通道蛋白的表达水平,可诱发细胞早期凋亡。提示Kv1.5通道参与人脑胶质瘤细胞的自噬过程。这为临床利用特异性Kv通道阻断剂靶向治疗胶质瘤提供了新的理论和实验依据。  相似文献   

5.
We have previously reported that SAP97 enhancement of hKv1.5 currents requires an intact Kv1.5 N-terminus and is independent of the PDZ-binding motif at the C-terminus of the channel [J. Eldstrom, W.S. Choi, D.F. Steele, D. Fedida, SAP97 increases Kv1.5 currents through an indirect N-terminal mechanism, FEBS Lett. 547 (2003) 205-211]. Here, we report that an interaction between the two proteins can be detected under certain conditions but their interaction is irrelevant to the enhancement of channel expression. Instead, a threonine residue at position 15 in the hKv1.5 N-terminus is critically important. Mutation of this residue, which lies within a consensus site for phosphorylation by protein kinase C, to an alanine, completely abrogated the effect of SAP97 on channel expression. Although we were unable to detect phosphorylation of this residue, specific inhibition of kinase C by Calphostin C eliminated the increase in wild-type hKv1.5 currents associated with SAP97 overexpression suggesting a role for this kinase in the response.  相似文献   

6.
The voltage gated Kv1.5 channels conduct the ultrarapid delayed rectifier current (IKur) and play critical role in repolarization of action potential duration. It is the most rapidly activated channel and has very little or no inactivated states. In human cardiac cells, these channels are expressed more extensively in atrial myocytes than ventricle. From the evidences of its localization and functions, Kv1.5 has been declared a selective drug target for the treatment of atrial fibrillation (AF). In this present study, we have tried to identify the rapidly activating property of Kv1.5 and studied its mode of inhibition using molecular modeling, docking, and simulation techniques. Channel in open conformation is found to be stabilized quickly within the dipalmitoylphosphatidylcholine membrane, whereas most of the secondary structure elements were lost in closed state conformation. The obvious reason behind its ultra-rapid property is possibly due to the amino acid alteration in S4–S5 linker; the replacement of Lysine by Glutamine and vice versa. The popular published drugs as well as newly identified lead molecules were able to inhibit the Kv1.5 in a very similar pattern, mainly through the nonpolar interactions, and formed sable complexes. V512 is found as the main contributor for the interaction along with the other important residues such as V505, I508, A509, V512, P513, and V516. Furthermore, two screened novel compounds show surprisingly better inhibitory potency and can be considered for the future perspective of antiarrhythmic survey.  相似文献   

7.
《Molecular cell》2022,82(13):2427-2442.e4
  1. Download : Download high-res image (192KB)
  2. Download : Download full-size image
  相似文献   

8.
Voltage gated potassium channels are tetrameric membrane proteins, which have a central role in cellular excitability. Human Kv1.4 channels open on membrane depolarization and inactivate rapidly by a ‘ball and chain’ mechanism whose molecular determinants have been mapped to the cytoplasmic N terminus of the channel. Here we show that the other terminal end of the channel also plays a role in channel inactivation. Swapping the C-terminal residues of hKv1.4 with those from two non-inactivating channels (hKv1.1 and hKv1.2) affects the rates of inactivation, as well as the recovery of the channel from the inactivated state. Secondary structure predictions of the hKv1.4 sequence reveal a helical structure at its distal C-terminal. Complete removal or partial disruption of this helical region results in channels with remarkably slowed inactivation kinetics. The ionic selectivity and voltage-dependence of channel opening were similar to hKv1.4, indicative of an unperturbed channel pore. These results demonstrate that fast inactivation is modulated by structural elements in the C-terminus, suggesting that the process involves the concerted action of the N- and C-termini.  相似文献   

9.
BACKGROUND: Genetically abnormal action potential duration (APD) can be a cause of arrhythmias that include long and short QT interval syndrome. PURPOSE: The aim of this study was to evaluate the arrhythmogenic effect of short QT syndrome induced by the over-expression of Kv1.5 in rat. METHODS: From Sprague-Dawley rats on fetal days 18-19, cardiomyocytes were excised and cultured with and without transfection with the Kv-1.5 gene using an adenovirus vector. The expression of Kv1.5 was proven by immunohistochemistry and Western blot analysis. In the culture dish and in the whole cells, the electrical activities were recorded using the whole-cell patch-clamp technique and the effects of 4-AP and verapamil were tested. RESULTS: After transfection with Kv1.5 for 12h, immunohistochemical staining and Western blot analysis were positive for Kv1.5 while they were negative in the control transfected with only Lac-Z. In the culture dish, the myocytes showed spontaneous beating at 115beats/min (bpm) just prior to the transfection with Kv1.5 and increased to 367bpm at 24h. The control myocytes showed stable beating rates during culturing. 4-AP at 200microM slowed down the rate and verapamil abolished the beating. In the whole cells, the maximal resting membrane potential was slightly depolarized and APD was extremely abbreviated both at 50% and 90% of repolarization compared with those of the control. Rapid spontaneous activities were found in a single myocyte with Kv1.5 transfection and 4-AP slowed down the frequency of the activities with a reversal of the shortened APD. CONCLUSION: The over-expression of Kv1.5 induced short APD and triggered activities in rat cardiomyocytes. This model can be used to study the arrhythmogenic substrate of short QT syndrome.  相似文献   

10.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

11.
12.
Voltage-gated potassium (Kv) channels exist in the membranes of all living cells. Of the functional classes of Kv channels, the Kv1 channels are the largest and the best studies and are known to play essential roles in excitable cell function, providing an essential counterpoin to the various inward currents that trigger excitability. The serum potassium concentration [K o + ] is tightly regulated in mammals and disturbances can cause significant functional alterations in the electrical behavior of excitable tissues in the nervous system and the heart. At least some of these changes may be mediated by Kv channels that are regulated by changes in the extracellular K+ concentration. As well as changes in serum [K o + ], tissue acification is a frequent pathological condition known to inhibit Shaker and Kv1 voltage-gated potassium channels. In recent studies, it has become recognized that the acidification-induced inhibition of some Kv1 channels is K o + -dependent, and the suggestion has been made that pH and K o + may regulate the channels via a common mechanism. Here we discuss P/C type inactivation as the common pathway by which some Kv channels become unavailable at acid pH and lowered K o + . It is suggested that binding of protons to a regulatory site in the outer pore mouth of some Kv channels favors transitions to the inactivated state, whereas K+ ions exert countereffects. We suggest that modulation of the number of excitable voltage-gated K+ channels in the open vs inactivated states of the channels by physiological H+ and K+ concentrations represents an important pathway to control Kv channel function in health and disease.  相似文献   

13.
Mammalian X-chromosome inactivation is controlled by a multilayered silencing pathway involving both short and long non-coding RNAs, which differentially recruit the epigenetic machinery to establish chromatin asymmetries. In response to developmentally regulated small RNAs, dicer, a key effector of RNA interference, locally silences Xist on the active X-chromosome and establishes the heterochromatin conformation along the silent X-chromosome. The 1.6 kb RepA RNA initiates silencing by targeting the PRC2 polycomb complex to the inactive X-chromosome. In addition, the nuclear microenvironment is implicated in the initiation and maintenance of X-chromosome asymmetries. Here we review new findings involving these various RNA species in terms of understanding Xist gene regulation and the establishment of X-chromosome inactivation.  相似文献   

14.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

15.
Members of the HCN channel family generate hyperpolarization-activated cation currents (Ih) that are directly regulated by cAMP and contribute to pacemaker activity in heart and brain. The four HCN isoforms show distinct but overlapping patterns of expression in different tissues. Here, we report that HCN1 and HCN2, isoforms coexpressed in neocortex and hippocampus that differ markedly in their biophysical properties, coassemble to generate heteromultimeric channels with novel properties. When expressed in Xenopus oocytes, HCN1 channels activate 5-10-fold more rapidly than HCN2 channels. HCN1 channels also activate at voltages that are 10-20 mV more positive than those required to activate HCN2. In cell-free patches, the steady-state activation curve of HCN1 channels shows a minimal shift in response to cAMP (+4 mV), whereas that of HCN2 channels shows a pronounced shift (+17 mV). Coexpression of HCN1 and HCN2 yields Ih currents that activate with kinetics and a voltage dependence that tend to be intermediate between those of HCN1 and HCN2 homomers, although the coexpressed channels do show a relatively large shift by cAMP (+14 mV). Neither the kinetics, steady-state voltage dependence, nor cAMP dose-response curve for the coexpressed Ih can be reproduced by the linear sum of independent populations of HCN1 and HCN2 homomers. These results are most simply explained by the formation of heteromeric channels with novel properties. The properties of these heteromeric channels closely resemble the properties of I(h) in hippocampal CA1 pyramidal neurons, cells that coexpress HCN1 and HCN2. Finally, differences in Ih channel properties recorded in cell-free patches versus intact oocytes are shown to be due, in part, to modulation of Ih by basal levels of cAMP in intact cells.  相似文献   

16.
Ethanol often causes critical health problems by altering the neuro-nal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI (4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels.  相似文献   

17.
Cardiac stress consistently activates c-Jun NH(2)-terminal kinase (JNK) pathways, however the role of different members of the JNK family is unclear. In this study, we applied pressure overload (TAC) in mice with selective deletion of the three JNK genes (Jnk1(-/-), Jnk2(-/-), and Jnk3(-/-)). Following TAC, all three JNK knockout mouse lines developed cardiac hypertrophy similar to wild-type mice (WT), but only JNK1(-/-) mice displayed a significant reduction in fractional shortening after 3 and 7 days of pressure overload, associated with a significant increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining and marked inflammatory infiltrate. After the acute deterioration stage, JNK1(-/-) mice underwent a slow recovery followed by a steady progression of cardiac dysfunction, becoming indistinguishable from WT after 12 weeks of TAC. These data suggest that JNK1 plays a protective role in response to pressure overload, preventing the early deterioration in cardiac function following an acute increase in afterload.  相似文献   

18.
Transient outward K+ current (Ito) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K+ channel is an important component of Ito. The function and expression of Kv4.3 K+ channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. In this review, we summarized the changes of cardiac Kv4.3 K+ channel in heart diseases and discussed the potential role of Kv4.3 K+ channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, downregulation of Kv4.3 K+ channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca2+]i, activation of calcineurin and heart hypertrophy/heart failure. However, in canine and human, Kv4.3 K+ channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K+ channel/APD/[Ca2+]i pathway, there exits another mechanism of Kv4.3 K+ channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K+ channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII, which induces heart hypertrophy/heart failure. Upregulation of Kv4.3 K+ channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K+ channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K+ channel might be potentially harmful or beneficial to hearts through CaMKII.  相似文献   

19.
The single channel gating properties of human CaV2.1 (P/Q-type) calcium channels were investigated with cell-attached patch-clamp recordings on HEK293 cells stably expressing these calcium channels. Human CaV2.1 channels showed a complex modal gating, which is described in this and the preceding paper (Luvisetto, S., T. Fellin, M. Spagnolo, B. Hivert, P.F. Brust, M.M. Harpold, K.A. Stauderman, M.E. Williams, and D. Pietrobon. 2004. J. Gen. Physiol. 124:445-461). Here, we report the characterization of the so-called b gating mode. A CaV2.1 channel in the b gating mode shows a bell-shaped voltage dependence of the open probability, and a characteristic low open probability at high positive voltages, that decreases with increasing voltage, as a consequence of both shorter mean open time and longer mean closed time. Reversible transitions of single human CaV2.1 channels between the b gating mode and the mode of gating in which the channel shows the usual voltage dependence of the open probability (nb gating mode) were much more frequent (time scale of seconds) than those between the slow and fast gating modes (time scale of minutes; Luvisetto et al., 2004), and occurred independently of whether the channel was in the fast or slow mode. We show that the b gating mode produces reversible uncoupling of inactivation in human CaV2.1 channels. In fact, a CaV2.1 channel in the b gating mode does not inactivate during long pulses at high positive voltages, where the same channel in both fast-nb and slow-nb gating modes inactivates relatively rapidly. Moreover, a CaV2.1 channel in the b gating mode shows a larger availability to open than in the nb gating modes. Regulation of the complex modal gating of human CaV2.1 channels could be a potent and versatile mechanism for the modulation of synaptic strength and plasticity as well as of neuronal excitability and other postsynaptic Ca2+-dependent processes.  相似文献   

20.
Lu Y  Hanna ST  Tang G  Wang R 《Life sciences》2002,71(12):1465-1473
A large array of voltage-gated K(+) channel (Kv) genes has been identified in vascular smooth muscle tissues. This molecular diversity underlies the vast repertoire of native Kv channels that regulate the excitability of vascular smooth muscle tissues. The contributions of different Kv subunit gene products to the native Kv currents are poorly understood in vascular smooth muscle cells (SMCs). In the present study, Kv subunit-specific antibodies were applied intracellularly to selectively block various Kv channel subunits and the whole-cell outward Kv currents were recorded using the patch-clamp technique in rat mesenteric artery SMCs. Anti-Kv1.2 antibody (8 microg/ml) inhibited the Kv currents by 29.2 +/- 5.9% (n = 6, P < 0.05), and anti-Kv1.5 antibody (6 microg/ml) by 24.5 +/- 2.6% (n = 7, P < 0.05). Anti-Kv2.1 antibody inhibited the Kv currents in a concentration-dependent fashion (4-20 microg/ml). Co-application of antibodies against Kv1.2 and Kv2.1 (8 microg/ml each) induced an additive inhibition of Kv currents by 42.3 +/- 3.1% (n = 7, P < 0.05). In contrast, anti-Kv1.3 antibody (6 microg/ml) did not have any effect on the native Kv current (n = 6, P > 0.05). A control antibody (anti-GIRK1) also had no effect on the native Kv currents. This study demonstrates that Kv1.2, Kv1.5, and Kv2.1 subunit genes all contribute to the formation of the native Kv channels in rat mesenteric artery SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号