首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phorbol esters, such as phorbol myristate acetate (PMA), are known to be potent co-stimulants with calcium ionophores for activation of T lymphocytes. The most extensively studied intracellular effect of PMA is its ability to activate the cytoplasmic enzyme protein kinase C (pkC). Herein, we examined the role of pkC activation during T cell activation. During physiologic activation, this enzyme is activated by diacylglycerol which is generated through the hydrolysis of polyphosphoinositides. Therefore, we studied the activation of T lymphocytes induced by a synthetic diacylglycerol, dioctanoylglycerol. In contrast to PMA, this compound can be metabolized in T cells and presumably more closely mimics physiologic activation of pkC. Dioctanoylglycerol together with reagents that induce increases in intracellular free Ca2+ concentration, Ca2+ ionophores, or anti-cluster designation (CD)3 monoclonal antibodies (mAb) were able to induce interleukin 2 receptor expression and proliferation of T lymphocytes. Previous studies have demonstrated that the stimulation of T cells via the CD3/T cell antigen receptor complex by mAb against CD3 leads to an increase in cytoplasmic free Ca2+ and to an activation of pkC. Paradoxically, however, soluble CD3 antibodies do not cause proliferation of resting purified T cells. Inasmuch as immobilization of CD3 mAb has been shown to influence the agonist properties of such antibodies, we compared the ability of soluble and immobilized CD3 mAb to activate pkC. We demonstrated herein that soluble CD3 mAb cause only a very transient activation of pkC in the T cell leukemic line Jurkat. This pkC activation is markedly prolonged when Jurkat cells are stimulated with immobilized rather than soluble CD3 antibodies. These studies suggest that activation of pkC plays a major role in T cell activation and that the activation of pkC is influenced by the form in which CD3 mAb is presented to T cells.  相似文献   

2.
An immediate consequence of Ag-specific activation of T cells is phosphorylation of the gamma-subunit of the CD3 gamma-chain. There is good evidence that the kinase that mediates CD3 gamma-chain phosphorylation is protein kinase C (pkC). It has also been proposed that the interaction between pkC and CD3 gamma-chains controls the cell surface expression of the antigen receptor/CD3 Ag complex. In the present study we present data relevant to these two points. Thus we show that CD3 gamma-subunit phosphorylation can be triggered by the calcium ionophore ionomycin. However, as judged by several criteria, ionomycin does not stimulate cellular pkC. Accordingly, ionomycin must regulate phosphorylation of the CD3 Ag by a kinase distinct from pkC. The phosphorylation of CD3 Ag induced by ionomycin is not accompanied by a modulation of the cell surface expression of CD3 molecules which implies that CD3 gamma-chain phosphorylation is not a sufficient signal for the endocytosis of the CD3/Ag receptor complex.  相似文献   

3.
Ligation of the TCR on Jurkat T lymphoblastoid cells causes an 1,4,5-inositol trisphosphate-dependent rise in intracellular cytoplasmic calcium that is inhibited by PMA, a potent activator of protein kinase C. Consequently, protein kinase C is widely believed to mediate feedback inhibition of TCR-activated phospholipase C. We have now extended these studies to normal unblasted human CD4+ T lymphocytes, examining the PMA sensitivity of both the TCR complex-mediated release of total inositol-phosphates and the resynthesis of the parent phosphoinositides. In contrast to Jurkat, in which PMA inhibited release of 1,4,5-inositol trisphosphate by 60% and total inositolphosphates by 40% (50% inhibitory concentration, 5.6 nM), normal cells displayed a marked increase in anti-CD3-induced phosphatidylinositol (PI) cycling in the presence of PMA. Both total inositolphosphate release and PI resynthesis were maximally elevated (88% and 342%, respectively) by a PMA concentration that also optimally supported a subsequent proliferative response; the ED50 was at least 11.7-fold lower than that for the inhibitory effect of PMA on breakdown of total Jurkat PI. A PKC nonactivating phorbol ester had no effect. If anti-CD3 was replaced by the mitogenic lectin PHA, PI resynthesis was similarly up-regulated by PMA in these highly purified cells. The PMA up-regulatory phenomenon was not a simple consequence of cell blastogenesis, inasmuch as there was no early effect on the non-signaling-associated phosphatidylethanolamine compartment after CD3 stimulation. Thus, PKC activation appears to accelerate TCR-linked PI metabolism in normal Th cells, in contrast to the feedback inhibitor paradigm observed in Jurkat and other tumor cell systems.  相似文献   

4.
In addition to the T3/antigen receptor complex (T3/Ti), other T cell surface molecules participate in early events involved in human T cell activation. In this report we document that monoclonal antibody 9.3, which recognizes a 90,000 dalton homodimer expressed on human T cells, synergizes with ligands reacting with T3/Ti to activate purified T cells and Jurkat, a human T cell leukemic line. Unlike phorbol myristate acetate (PMA), 9.3 was able to synergize only with anti-T3 or anti-Ti if these antibodies were immobilized. Moreover, 9.3 failed to synergize with the calcium ionophore ionomycin. At high concentrations only, 9.3 could synergize with PMA in the activation of Jurkat and a T3/Ti negative mutant of Jurkat. At such high concentrations of 9.3, small transient increases in cytoplasmic free calcium ((Ca++)i) were detected in quin 2-loaded Jurkat cells. This increase in (Ca++)i was the result of release of internal stores of calcium. 9.3 induced the hydrolysis of polyphosphoinositides, albeit the magnitude of inositol phosphates generated in response to 9.3 was substantially less than that observed with anti-Ti. No effect on pkC translocation was observed in Jurkat cells stimulated with 9.3. Although the small increase in (Ca++)i induced by 9.3 may account for its synergy with PMA, this effect is unlikely to account for the more potent synergistic effect observed with 9.3 and phytohemagglutinin or immobilized anti-T3 and anti-Ti antibodies.  相似文献   

5.
In many cells, protein kinase C (PKC) activation inhibits cellular phospholipase C thereby preventing receptor-mediated phosphatidylinositol (PI) metabolism. In T lymphocytes, the T cell antigen receptor (Ti)/CD3 complex regulates PI hydrolysis and we have examined the consequences of PKC activation on Ti/CD3-mediated PI metabolism in human peripheral blood-derived T lymphocytes (T lymphoblasts) and the leukemic T cell line Jurkat. In Jurkat cells, PI metabolism after Ti/CD3 stimulation, is inhibited by PKC activation. PKC activation also inhibits calcium-induced PI metabolism in permeabilized Jurkat cells. In marked contrast, PI metabolism after Ti/CD3 stimulation in T lymphoblasts, is not inhibited by PKC activation. Moreover, in permeabilized T lymphoblasts PI metabolism can be induced by calcium in synergy with guanine 5'-O-(3-thiotrisphosphate) via a PKC-insensitive mechanism. The different effect of PKC stimulation on PI metabolism in Jurkat cells and T lymphoblasts reveals heterogeneity of PLC regulation in T lymphocytes. The data also indicate that the role of PKC as a regulator of Ti/CD3 signal transduction can differ depending on cell type.  相似文献   

6.
Galectin-1 (gal-1) a member of the mammalian beta-galactoside-binding proteins recognizes preferentially Galbeta1-4GlcNAc sequences of oligosaccharides associated with several cell surface glycoconjugates. In the present work, gal-1 has been identified to be a ligand for the CD3-complex as well as for CD2 as detected by affinity chromatography of Jurkat T-cell lysates on gal-1 agarose and by binding of the biotinylated lectin to CD3 and CD2 immunoprecipitates on blots. In CD45(+)Jurkat E6.1 cells, the lectin stimulates a sustained increase in the intracytoplasmic calcium concentration ([Ca(2+)](i)) consisting of both the release of calcium from intracellular stores and the calcium influx from the extracellular space. This effect of gal-1 on [Ca(2+)](i)is completely inhibited by lactose at 10 mM and was absent in CD45(-)Jurkat J45.01 cells. Preincubation of Jurkat E6.1 cells with cholera toxin or with the protein tyrosine kinase inhibitor herbimycin A reduced the gal-1 induced calcium response whereas the increase in [Ca(2+)](i)stimulated by CD2 or CD3 monoclonal antibodies (mAbs) was completely inhibited. Depolarization of E6.1 cells in a high-potassium buffer, a standard method to activate voltage-operated calcium channels, was without effect on [Ca(2+)](i). Membrane depolarization with gramicidin or by a high-potassium buffer was without effects on the lectin-mediated calcium release from intracellular stores but inhibited the gal-1 induced receptor-operated calcium influx. In Jurkat E6.1 cells the lectin stimulates the transient generation of inositol-1,4,5-trisphosphate and the tyrosine phosphorylation of phospholipase Cgamma1. The results suggest that the ligation of CD2 and CD3 by gal-1 induces early events in T-cell activation comparable with that elicited by CD2 or CD3 mAbs.  相似文献   

7.
The negative regulation of T- or B-cell antigen receptor signaling by CD5 was proposed based on studies of thymocytes and peritoneal B-1a cells from CD5-deficient mice. Here, we show that CD5 is constitutively associated with phosphotyrosine phosphatase activity in Jurkat T cells. CD5 was found associated with the Src homology 2 (SH2) domain containing hematopoietic phosphotyrosine phosphatase SHP-1 in both Jurkat cells and normal phytohemagglutinin-expanded T lymphoblasts. This interaction was increased upon T-cell receptor (TCR)-CD3 cell stimulation. CD5 co-cross-linking with the TCR-CD3 complex down-regulated the TCR-CD3-increased Ca2+ mobilization in Jurkat cells. In addition, stimulation of Jurkat cells or normal phytohemagglutinin-expanded T lymphoblasts through TCR-CD3 induced rapid tyrosine phosphorylation of several protein substrates, which was substantially diminished after CD5 cross-linking. The CD5-regulated substrates included CD3zeta, ZAP-70, Syk, and phospholipase Cgammal but not the Src family tyrosine kinase p56(lck). By mutation of all four CD5 intracellular tyrosine residues to phenylalanine, we found the membrane-proximal tyrosine at position 378, which is located in an immunoreceptor tyrosine-based inhibitory (ITIM)-like motif, crucial for SHP-1 association. The F378 point mutation ablated both SHP-1 binding and the down-regulating activity of CD5 during TCR-CD3 stimulation. These results suggest a critical role of the CD5 ITIM-like motif, which by binding to SHP-1 mediates the down-regulatory activity of this receptor.  相似文献   

8.
The function of the second protein tyrosine phosphatase domain (D2) in two-domain protein tyrosine phosphatases (PTP) is not well understood. In CD45, D2 can interact with the catalytic domain (D1) and stabilize its activity. Although D2 itself has no detectable catalytic activity, it can bind substrate and may influence the substrate specificity of CD45. To further explore the function of D2 in T cells, a full-length construct of CD45 lacking the D1 catalytic domain (CD45RABC-D2) was expressed in CD45+ and CD45- Jurkat T cells. In CD45- Jurkat T cells, CD45RABC-D2 associated with Lck but, unlike its active counterpart CD45RABC, did not restore the induction of tyrosine phosphorylation or CD69 expression upon T cell receptor (TCR) stimulation. Expression of CD45RABC-D2 in CD45+ Jurkat T cells resulted in its association with Lck, increased the phosphorylation state of Lck, and reduced T cell activation. TCR-induced tyrosine phosphorylation was delayed, and although MAPK phosphorylation and CD69 expression were not significantly affected, the calcium signal and IL2 production were severely reduced. This indicates that the non-catalytic domains of CD45 can interact with Lck in T cells. CD45RABC-D2 acts as a dominant negative resulting in an increase in Lck phosphorylation and a preferential loss of the calcium signaling pathway, but not the MAPK pathway, upon TCR signaling. This finding suggests that, in addition to their established roles in the initiation of TCR signaling, CD45 and Lck may also influence the type of TCR signal generated.  相似文献   

9.
The glycosylphosphatidylinositol (GPI)-anchored molecule CD59 has been implicated in the modulation of T cell responses, but the underlying molecular mechanism of CD59 influencing T cell signaling remained unclear. Here we analyzed Jurkat T cells stimulated via anti-CD3ε- or anti-CD59-coated surfaces, using time-resolved single-cell Ca2+ imaging as a read-out for stimulation. This analysis revealed a heterogeneous Ca2+ response of the cell population in a stimulus-dependent manner. Further analysis of T cell receptor (TCR)/CD3 deficient or overexpressing cells showed that CD59-mediated signaling is strongly dependent on TCR/CD3 surface expression. In protein co-patterning and fluorescence recovery after photobleaching experiments no direct physical interaction was observed between CD59 and CD3 at the plasma membrane upon anti-CD59 stimulation. However, siRNA-mediated protein knock-downs of downstream signaling molecules revealed that the Src family kinase Lck and the adaptor molecule linker of activated T cells (LAT) are essential for both signaling pathways. Furthermore, flow cytometry measurements showed that knock-down of Lck accelerates CD3 re-expression at the cell surface after anti-CD59 stimulation similar to what has been observed upon direct TCR/CD3 stimulation. Finally, physically linking Lck to CD3ζ completely abolished CD59-triggered Ca2+ signaling, while signaling was still functional upon direct TCR/CD3 stimulation. Altogether, we demonstrate that Lck mediates signal transmission from CD59 to the TCR/CD3 pathway in Jurkat T cells, and propose that CD59 may act via Lck to modulate T cell responses.  相似文献   

10.
G proteins are membrane-bound molecules involved in coupling of surface receptors with signal transduction effector systems in multiple cell types including T lymphocytes. Given that mature T cells which lack antigen receptors (CDl-Ti) are refractory to stimulation through CD2 or other accessory molecules, T cell receptor components likely play a critical role in coupling surface receptors with signal transduction effectors. It has recently been proposed that modulation of T cell receptor components with MAbs results in a physical loss or functional inactivation of G protein(s). In view of the importance of the T cell activation process, we herein examined G proteins in untreated or antibody-modulated Jurkat T cells as well as in genetic variants lacking either CD3-Ti or CD2 surface receptors. 43- and 41-kDa G protein alpha chains are ADP ribosylated with cholera (CTX) and pertussis (PTX) toxins, respectively, in wild type and receptor minus cell populations. In the wild type Jurkat cell line as well as in CD3- and CD2- variants, AlF4- can activate the G protein(s) presumably associated with phospholipase C to generate polyphosphoinositide turnover as well as an increase in cytoplasmic free calcium ions. Furthermore, G protein(s) linked to adenylylcyclase, a pathway which inhibits T lymphocyte activation, can be directly activated with CTX in the absence of CD3-Ti or CD2 on the membrane. Importantly, AlF4- can also induce polyphosphoinositide turnover in Jurkat cells whose T cell receptor proteins have been modulated with anti-CD3 MAb. These data provide functional and biochemical evidence that at least certain G proteins are intact in the absence of surface expression of CD3-Ti or CD2 molecules and imply that CD3-Ti desensitization is not singularly due to G protein loss.  相似文献   

11.
CD47 has been implicated in both positive and negative regulation of T cells as well as in T cell death. To clarify the role of CD47 in T cell function, we have studied the mechanism of T cell death in response to CD47 ligands, including mAb 1F7, thrombospondin-1, and a CD47 agonist peptide derived from it. CD47(-/-) Jurkat T cells (JINB8) were resistant to killing by all three ligands, indicating the essential role of CD47. Primary human T cells were also killed by CD47 ligands, but only after activation with anti-CD3. CD47-mediated cell death occurred without active caspases, DNA fragmentation, or Bcl-2 degradation. Pretreatment of Jurkat and primary T cells with pertussis toxin (PTX) prevented CD47-mediated death, indicating the involvement of G((i)alpha). Pretreatment of T cells with 8-bromo cAMP, forskolin, or 3-isobutyl-1-methylxanthine prevented the CD47-mediated apoptosis, and 1F7 dramatically reduced intracellular cAMP levels, an effect reversed with PTX. H89 and protein kinase A (PKA) inhibitor peptide, a specific PKA inhibitor, prevented rescue of T cells by PTX, 8-bromo cAMP, and forskolin, indicating a direct role for one or more PKA substrates. Thus, CD47-mediated killing of activated T cells occurs by a novel pathway involving regulation of cAMP levels by heterotrimeric G((i)alpha) with subsequent effects mediated by PKA.  相似文献   

12.
CD3 receptor modulation in Jurkat leukemic cell line   总被引:1,自引:0,他引:1  
CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low) (217.6), CD3+(217.9) or CD3(low) (217.7). The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.  相似文献   

13.
CD47 signals T cell death.   总被引:10,自引:0,他引:10  
Activation-induced death of T cells regulates immune responses and is considered to involve apoptosis induced by ligation of Fas and TNF receptors. The role of other receptors in signaling T cell death is less clear. In this study we demonstrate that activation of specific epitopes on the Ig variable domain of CD47 rapidly induces apoptosis of T cells. A new mAb, Ad22, to this site induces apoptosis of Jurkat cells and CD3epsilon-stimulated PBMC, as determined by morphological changes, phosphatidylserine exposure on the cell surface, uptake of propidium iodide, and true counts by flow cytometry. In contrast, apoptosis was not observed following culture with anti-CD47 mAbs 2D3 or B6H12 directed to a distant or closely adjacent region, respectively. CD47-mediated cell death was independent of CD3, CD4, CD45, or p56lck involvement as demonstrated by studies with variant Jurkat cell lines deficient in these signaling pathways. However, coligation of CD3epsilon and CD47 enhanced phosphatidylserine externalization on Jurkat cells with functional CD3. Furthermore, normal T cells required preactivation to respond with CD47-induced apoptosis. CD47-mediated cell death appeared to proceed independent of Fas or TNF receptor signaling and did not involve characteristic DNA fragmentation or requirement for IL-1beta-converting enzyme-like proteases or CPP32. Taken together, our data demonstrate that under appropriate conditions, CD47 activation results in very rapid T cell death, apparently mediated by a novel apoptotic pathway. Thus, CD47 may be critically involved in controlling the fate of activated T cells.  相似文献   

14.
The T cell receptor (TCR)-CD3 complex and the costimulatory molecule CD28 are critical for T cell function. Both receptors utilize protein tyrosine kinases (PTKs) for the phosphorylation of various signaling molecules, a process that is critical for the function of both receptors. The PTKs of the focal adhesion family, Pyk2 and Fak, have been implicated in the signaling of TCR and CD28. We show here evidence for the regulation of TCR- and CD28-induced tyrosine phosphorylation of the focal adhesion PTKs by protein kinase C (PKC). Thus, treating Jurkat T cells with the PKC activator phorbol 12-myristate 13-acetate (PMA) rapidly and strongly reversed receptor-induced tyrosine phosphorylation of the focal adhesion PTKs. In contrast, PMA did not affect TCR-induced tyrosine phosphorylation of CD3zeta or the PTKs Fyn and Zap-70. However, PMA induced a strong and rapid dephosphorylation of the linker molecule for activation of T cells. PMA failed to induce the dephosphorylation of proteins in PKC-depleted cells or in cells pretreated with the PKC inhibitor Ro-31-8220, confirming the role of PKC in mediating the PMA effect on receptor-induced protein tyrosine phosphorylation. The involvement of protein tyrosine phosphatases (PTPases) in mediating the dephosphorylation of the focal adhesion PTKs was confirmed by the failure of PMA to dephosphorylate Pyk2 in cells pretreated with the PTPase inhibitor orthovanadate. These results implicate PKC in the regulation of receptor-induced tyrosine phosphorylation of the focal adhesion PTKs in T cells. The data also suggest a role for PTPases in the PKC action.  相似文献   

15.
Cloning and functional expression of the T cell activation antigen CD26.   总被引:14,自引:0,他引:14  
A cDNA encoding the T cell activation Ag CD26 was isolated from human PHA-activated T cells by using an expression cloning method. The nucleotide sequence obtained predicts a protein of 766 amino acids of type II membrane topology, with six amino acids in the cytoplasmic region. The predicted amino acid sequence of the Ag was 85% homologous to that of the dipeptidyl peptidase IV enzyme isolated from rat liver. Derivatives of the human leukemic T cell line Jurkat transfected with a CD26 expression plasmid were established. Characterization of the CD26 Ag expressed by the transfected Jurkat cells revealed that the Ag could be immunoprecipitated as a 110-kDa molecule similar to that found on peripheral blood T cells and that the Ag had dipeptidyl peptidase IV activity. Functional analysis of these Jurkat transfectants showed that cross-linking of the CD26 and CD3 Ag with their respective antibodies resulted in enhanced intracellular calcium mobilization and IL-2 production. These results provide direct evidence that the CD26 Ag plays a role in T cell activation.  相似文献   

16.
We used three anti-human anti-CD3 mAb each recognizing different surface CD3 epitopes to differentially perturb the CD3/TCR complex on the surface of Jurkat T cells. In the presence of phorbol ester, these anti-CD3 mAb triggered differential IL-2 production in Jurkat T cells, which could not be explained by differences in kinetics of IL-2 production, by differences in IL-2 adsorption caused by differential surface expression of p55 or p75 IL-2R, by effects on IL-2 secretion rather than actual synthesis, or by differential toxicities of the anti-CD3 mAb to Jurkat cells. In addition, this differential anti-CD3-induced IL-2 production could not be explained by differences in mAb isotype or in avidities of the anti-CD3 mAb for the Jurkat cells. Moreover, anti-CD3 mAb covalently immobilized onto beads also differentially induced IL-2 production in Jurkat cells, suggesting that the differential IL-2 response is not based on differential rates of anti-CD3-induced modulation of Jurkat cell surface CD3. Although differences among the anti-CD3 mAb in the initial rates of binding to Jurkat cell were observed, this was also believed unlikely to explain the differential IL-2 response. Regardless of the anti-CD3 mAb used, anti-CD3-induced total inositol phosphate (IP) production did not necessarily correlate with anti-CD3-induced IL-2 production. Nevertheless, despite the differences among the anti-CD3 mAb in inducing IL-2 production, the calcium responses were grossly similar. Taken together, these observations indicate that CD3/TCR-mediated IL-2 production in Jurkat cells can be dissociated from total IP generation, and the basis of differential CD3/TCR-mediated IL-2 production in these cells does not appear to be at the level of the initial activation-induced calcium response. These studies suggest that the nature of the CD3/TCR ligand (its physical form and/or the specific epitope it perturbs) can either directly influence intracellular events distal to the generation of IP and increase in intracellular free calcium leading to differential IL-2 production or can trigger IP-independent pathways that affect IL-2 production.  相似文献   

17.
18.
19.
A novel role for p21-activated protein kinase 2 in T cell activation   总被引:5,自引:0,他引:5  
To identify novel components of the TCR signaling pathway, a large-scale retroviral-based functional screen was performed using CD69 expression as a marker for T cell activation. In addition to known regulators, two truncated forms of p21-activated kinase 2 (PAK2), PAK2DeltaL(1-224) and PAK2DeltaS(1-113), both lacking the kinase domain, were isolated in the T cell screen. The PAK2 truncation, PAK2DeltaL, blocked Ag receptor-induced NFAT activation and TCR-mediated calcium flux in Jurkat T cells. However, it had minimal effect on PMA/ionomycin-induced CD69 up-regulation in Jurkat cells, on anti-IgM-mediated CD69 up-regulation in B cells, or on the migratory responses of resting T cells to chemoattractants. We show that PAK2 kinase activity is increased in response to TCR stimulation. Furthermore, a full-length kinase-inactive form of PAK2 blocked both TCR-induced CD69 up-regulation and NFAT activity in Jurkat cells, demonstrating that kinase activity is required for PAK2 function downstream of the TCR. We also generated a GFP-fused PAK2 truncation lacking the Cdc42/Rac interactive binding region domain, GFP-PAK2(83-149). We show that this construct binds directly to the kinase domain of PAK2 and inhibits anti-TCR-stimulated T cell activation. Finally, we demonstrate that, in primary T cells, dominant-negative PAK2 prevented anti-CD3/CD28-induced IL-2 production, and TCR-induced CD40 ligand expression, both key functions of activated T cells. Taken together, these results suggest a novel role for PAK2 as a positive regulator of T cell activation.  相似文献   

20.
Anthrax lethal toxin (LT) is a critical virulence factor that cleaves and inactivates MAPK kinases (MAPKKs) in host cells and has been proposed as a therapeutic target in the treatment of human anthrax infections. Despite the potential use of anti-toxin agents in humans, the standard activity assays for anthrax LT are currently based on cytotoxic actions of anthrax LT that are cell-, strain-, and species-specific, which have not been demonstrated to occur in human cells. We now report that T cell proliferation and IL-2 production inversely correlate with anthrax LT levels in human cell assays. The model CD4+ T cell tumor line, Jurkat, is a susceptible target for the specific protease action of anthrax LT. Anthrax LT cleaves and inactivates MAPKKs in Jurkat cells, whereas not affecting proximal or parallel TCR signal transduction pathways. Moreover, anthrax LT specifically inhibits PMA/ionomycin- and anti-CD3-induced IL-2 production in Jurkat cells. An inhibitor of the protease activity of anthrax LT completely restores IL-2 production by anthrax LT-treated Jurkat cells. Anthrax LT acts on primary CD4+ T cells as well, cleaving MAPKKs and leading to a 95% reduction in anti-CD3-induced proliferation and IL-2 production. These findings not only will be useful in the development of new human cell-based bioassays for the activity of anthrax LT, but they also suggest new mechanisms that facilitate immune evasion by Bacillus anthracis. Specifically, anthrax LT inhibits IL-2 production and proliferative responses in CD4+ T cells, thereby blocking functions that are pivotal in the regulation of immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号