首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Mucopolysaccharidosis type IIIA (MPS IIIA) is the most common of the mucopolysaccharidoses. The disease is caused by a deficiency of the lysosomal enzyme sulphamidase and results in the storage of the glycosaminoglycan (GAG), heparan sulphate. MPS IIIA is characterised by widespread storage and urinary excretion of heparan sulphate, and a progressive and eventually profound neurological course. Gene therapy is one of the few avenues of treatment that hold promise of a sustainable treatment for this disorder.

Methods

The murine sulphamidase gene cDNA was cloned into a lentiviral vector and high-titre virus produced. Human MPS IIIA fibroblast cultures were transduced with the sulphamidase vector and analysed using molecular, enzymatic and metabolic assays. High-titre virus was intravenously injected into six 5-week old MPS IIIA mice. Three of these mice were pre-treated with hyperosmotic mannitol. The weight of animals was monitored and GAG content in urine samples was analysed by polyacrylamide gel electrophoresis.

Results

Transduction of cultured MPS IIIA fibroblasts with the sulphamidase gene corrected both the enzymatic and metabolic defects. Sulphamidase secreted by gene-corrected cells was able to cross correct untransduced MPS IIIA cells. Urinary GAG was found to be greatly reduced in samples from mice receiving the vector compared to untreated MPS IIIA controls. In addition, the weight of treated mice became progressively normalised over the 6-months post-treatment.

Conclusion

Lentiviral vectors appear promising vehicles for the development of gene therapy for MPS IIIA.  相似文献   

2.
Mucopolysaccharidosis type IIIA (MPS IIIA) is an inherited neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Reduced activity of sulphamidase (N‐sulphoglucosamine sulphohydrolase; SGSH; EC 3.10.1.1) results in intracellular accumulation of heparan sulphate (HS), with the brain as the primary site of pathology. We have used a naturally occurring MPS IIIA mouse model to determine the effectiveness of SGSH replacement through the cerebrospinal fluid (CSF) to decrease neuropathology. This is a potential therapeutic option for patients with this disorder. Mice received intra‐CSF injections of recombinant human SGSH (30, 50 or 70 μg) fortnightly from 6 to 18 weeks of age, and the cumulative effect on neuropathology was examined and quantified. Anti‐SGSH antibodies detected in plasma at euthanasia did not appear to impact upon the health of the mice or the experimental outcome, with significant but region‐dependent and dose‐dependent reductions in an HS‐derived oligosaccharide observed in the brain and spinal cord using tandem mass spectrometry. SGSH infusion reduced the number of storage inclusions observed in the brain when visualized using electron microscopy, and this correlated with a significant decrease in the immunohistochemical staining of a lysosomal membrane marker. Reduced numbers of activated isolectin B4‐positive microglia and glial fibrillary acidic protein‐positive astrocytes were seen in many, but not all, brain regions. Significant reductions in the number of ubiquitin‐positive intracellular inclusions were also observed. These outcomes show the effectiveness of this method of enzyme delivery in reducing the spectrum of neuropathological changes in murine MPS IIIA brain.  相似文献   

3.
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by a deficiency in sulphamidase (NS), a lysosomal enzyme required for the degradation of heparan sulphate glycosaminoglycans (gags). The MPS IIIA mouse is a naturally occurring model that accurately reflects the human pathology and disease course. It displays primarily central nervous system pathology accompanied by widespread accumulation of gag in somatic tissues. MPS IIIA mice exhibit greater bodyweight gain than normal littermates and attain a higher mature bodyweight. In this study, gastrointestinal morphology and function was characterised in the IIIA mouse. Stomach and duodenum weight increased in MPS IIIA mice and duodenum length also increased. An increased submucosal thickness was observed in MPS IIIA intestine compared to normal mice and lysosomal storage of gag was observed in this region. Storage was also observed in the lamina propria of the villus tip. All other morphometric measurements including villus height and crypt depth fell within the normal range. The gastric emptying half‐life of solid and liquid meals decreased with age in normal mice whereas the T½ of solid meals did not alter with age in MPS IIA mice such that they were elevated above normal by 38 weeks of age. Sucrase activity was higher than normal in MPS IIIA at all ages tested. These abnormalities in GI structure and function observed in MPS IIIA may contribute to weight gain in this disorder. J. Cell. Physiol. 219: 259–264, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Sulphamidase is an exoglycosidase involved in the degradation of heparan sulfate. Lack of sulphamidase activity leads to the lysosomal storage disorder Mucopolysaccharidosis type IIIA (Sanfilippo type A OMIM No. 252900). At present there are no naturally occurring small animal models of this disease that could be of fundamental importance to study the pathophysiology of the disease and to try therapeutic strategies. Cloning of the mouse gene is an important step to create a mouse model for this common mucopolysaccharidosis. We have isolated and sequenced the gene encoding mouse sulphamidase. Comparison of the deduced amino acid sequences of human and mouse sulphamidase showed 88% identity and 93% similarity. The exon-intron structure of the gene has been determined with the mouse 10-kb gene divided in 8 exons. The mouse sulphamidase gene (Sgsh) was mapped to the distal end of Chromosome (Chr) 11, in a region that is homologous with a segment of human Chr 17 containing the orthologous human gene. Received: 26 July 1999 / Accepted: 3 February 2000  相似文献   

5.
Mucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events.Wild-type (WT), MPSI, IIIA and IIIB mouse brains were analysed at 4 and 9 months of age. Quantitative immunohistochemistry showed significantly increased lysosomal compartment, GM2 ganglioside storage, neuroinflammation, decreased and mislocalised synaptic vesicle associated membrane protein, (VAMP2), and decreased post-synaptic protein, Homer-1, in layers II/III-VI of the primary motor, somatosensory and parietal cortex. Total heparan sulphate (HS), was significantly elevated, and abnormally N-, 6-O and 2-O sulphated compared to WT, potentially altering HS-dependent cellular functions. Neuroinflammation was confirmed by significantly increased MCP-1, MIP-1α, IL-1α, using cytometric bead arrays. An overall genotype effect was seen in all parameters tested except for synaptophysin staining, neuronal cell number and cortical thickness which were not significantly different from WT. MPSIIIA and IIIB showed significantly more pronounced pathology than MPSI in lysosomal storage, astrocytosis, microgliosis and the percentage of 2-O sulphation of HS. We also observed significant time progression of all genotypes from 4-9 months in lysosomal storage, astrocytosis, microgliosis and synaptic disorganisation but not GM2 gangliosidosis. Individual genotype*time differences were disparate, with significant progression from 4 to 9 months only seen for MPSIIIB with lysosomal storage, MPSI with astrocytocis and MPSIIIA with microgliosis as well as neuronal loss. Transmission electron microscopy of MPS brains revealed dystrophic axons, axonal storage, and extensive lipid and lysosomal storage. These data lend novel insight to MPS neuropathology, suggesting that MPSIIIA and IIIB have more pronounced neuropathology than MPSI, yet all are still progressive, at least in some aspects of neuropathology, from 4-9 months.  相似文献   

6.
Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.  相似文献   

7.
Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomal recessive disease that occurs due to a deficiency of heparan sulfate sulfamidase (SGSH). The deficiency of SGSH results in the lysosomal accumulation and urinary excretion of the glycosaminoglycan heparan sulfate. The clinical severity of MPS IIIA is predominantly characterized by severe central nervous system degeneration. Naturally occurring MPS IIIA has recently been described in New Zealand Huntaway dogs, with similar disease progression and biochemical characteristics observed in severely affected MPS IIIA patients. Here, we identify the disease-causing mutation in the MPS IIIA Huntaway dog as 708-709insC. The frequency of the 708-709insC mutation in a sample group of 203 New Zealand Huntaway dogs was determined to be 3.8%. The identification of the 708-709insC mutation will permit the identification of heterozygous carriers as an initial step toward establishing a breeding colony of MPS IIIA dogs for the study of various therapeutic strategies targeted to the central nervous system.  相似文献   

8.
Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.  相似文献   

9.
Abstract— Lipids and certain lysosomal enzymes were measured in the cerebral gray and white matter and in the liver of unaffected controls and six patients with mucopolysaccharidosis (MPS). Three of the patients had MPS Type I (Hurler), one Type II (Hunter), one Type IIIA (Sanfilippo A) and one Type V (Scheie). The glycosaminoglycans (GAG) of those tissues have been fully characterized previously (C onstantopoulos et al. , 1976).
Results of the present study: the normally minor brain monosialogangliosides GM2 and GM3 were markedly increased in the gray and to a lesser extent in the white matter of all the patients, except the patient with MPS Type V. On an average GM2 comprised 8.2 and 6.3, and GM3 11.8 and 6.0% of the total ganglioside neuraminic acid of the gray and white matter respectively in all patients with MPS I, II, and IIIA (normal subjects had less than 1).
Ceramide dihexoside was also increased in the gray matter of the patients with MPS I, MPS II and MPS IIIA.
The sphingolipid abnormalities were found only in tissues containing excessive amounts of partially degraded dermatan and heparan sulfates or heparan sulfate alone.
Of the six acid hydrolases assayed, the activity of /f-glucosaminidase was increased in both brain and liver, while that of α-galactosidase and β-galactosidase was diminished, particularly in the liver.
These results suggest that the partially degraded heparan sulfate (and perhaps the dermatan sulfate) which accumulate in the tissues of the patients with MPS may inhibit catabolic enzymes of various sphingolipids. In turn, accumulation of sphingolipids could be responsible at least for some of the brain damage and the mental retardation in MPS I, II and IIIA.  相似文献   

10.
Background aimsMucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder (LSD) in which an absence of sulfamidase results in incomplete degradation and subsequent accumulation of its substrate, heparan sulfate. Most neurodegenerative LSD remain untreatable. However, therapy options, such as gene, enzyme end cell therapy, are under investigation. Previously, we have constructed an embryonic stem (ES) cell line (NS21) that over-expresses human sulphamidase as a potential treatment for murine MPS IIIA.MethodsIn the present study the sulfatase-modifying factor I (SUMF1) and enhanced green fluorescence protein (eGFP) genes were co-introduced under a cytomegalovirus (CMV) promoter into NS21 cells, to enhance further sulfamidase activity and provide a marker for in vivo cell tracking, respectively. eGFP was also introduced under the control of the human elongation factor-1α (hEF-1α) promoter to compare the stability of transgene expression.ResultsDuring differentiation of ES cells into glial precursors, SUMF1 was down-regulated and was hardly detectable by day 18 of differentiation. Likewise, eGFP expression was heterogeneous and highly unstable. Use of a human EF-1α promoter resulted in more homogeneous eGFP expression, with ~ 50% of cells eGFP positive following differentiation into glial precursors. Compared with NS21 cells, the outgrowth of eGFP-expressing cells was not as confluent when differentiated into glial precursors.ConclusionsOur data suggest that SUMF1 enhances sulfamidase activity in ES cells, hEF-1α is a stronger promoter than CMV for ES cells and over-expression of eGFP may affect cell growth and contribute to unstable gene expression.  相似文献   

11.
Mucopolysaccharide (MPS) diseases are characterized by accumulation of glycosaminoglycans (GAGs) due to deficiencies in lysosomal enzymes responsible for GAG breakdown. Using a murine model of MPSI Hurler (MPSIH), we have quantified the heparan sulfate (HS) accumulation resulting from α-l-iduronidase (Idua) deficiency. HS levels were significantly increased in liver and brain tissue from 12-week-old Idua(-/-) mice by 87- and 20-fold, respectively. In addition, HS chains were shown to contain significantly increased N-, 2-O-, and 6-O-sulfation. Disaccharide compositional analyses also uncovered an HS disaccharide uniquely enriched in MPSIH, representing the terminal iduronic acid residue capping the non-reducing end of the HS chain, where no further degradation can occur in the absence of Idua. Critically, we identified that excess HS, some of which is colocalized to the Golgi secretory pathway, acts as a positive regulator of HS-sulfation, increasing the N-sulfotransferase activity of HS-modifying N-deacetylase/N-sulfotransferase enzymes. This mechanism may have severe implications during disease progression but, now identified, could help direct improved therapeutic strategies.  相似文献   

12.
Summary— Normal and otosclerotic bone cells were cultured in vitro in serum-free medium to evaluate single glycosaminoglycan (GAG) class synthesis and secretion. Moreover, the degradative process was studied by inhibiting the lysosomal functions through the addition of ammonium chloride to the cultures, an ammine known to inhibit lysosomal degradation by neutralizing organelle activity. Otosclerotic bone cells accumulated a lower amount of GAG both in the cellular and extracellular pool compared to normal ones. The decrease was markedly higher for secreted GAG. Moreover a different pattern of single GAG class distribution was observed in the two cell types considered. In the medium of otosclerotic cells a percentage increase of hyaluronic acid (HA) and dermatan sulphate (DS) and a percentage decrease of heparan sulfate (HS) and chondroitin sulfate (CS) were observed compared to normal bone cells. Ammonium chloride had a lower effect on pathologic than on normal cells, indicating a decrease in the degradative process in otosclerotic bone cells. These results were also confirmed by the experiments on GAG uptake and degradation and by the dosage of enzymatic activity of two exoglycosidases. Since extracellular GAG composition influences bone deposition and mineralization, these data support the hypothesis that otosclerosis is the result of an error in the connective tissue matrix structure.  相似文献   

13.
Glycosaminoglycans were extracted from normal, inflamed and phenytoin induced overgrowth of human gingival tissue by proteolysis and alcohol precipitation. Extracts were run in a Dowex-1 column and the fractions were treated with mucopolysaccharidases. Cellulose acetate electrophoresis was carried out with or without enzyme digestion for identification of individual glycosaminoglycans. Glycosaminoglycans were found to be decreased in inflammation but were observed to increase in the overgrowth. Hyaluronic acid was found to be increased in both the pathological conditions. Dermatan sulphate, chondroitin sulphate and heparan sulphate were observed to be decreased in inflammation. In overgrowth, dermatan sulphate and chondroitin sulphate were found to increase while the presence of heparan sulphate was not significant. The changes in the pattern of individual glycosaminoglycan in the two varied conditions are discussed.Abbreviations GAG glycosaminoglycan - MPS mucopolysaccharide - DS dermatan sulphate - HS heparan sulphate - CS chondroitin sulphate - HA hyaluronic acid - KS keratan sulphate  相似文献   

14.
The sulphation patterns of glycosaminoglycan (GAG) chains are decisive for the biological activity of their proteoglycan (PG) templates for sugar chain polymerization and sulphation. The amounts and positions of sulphate groups are often determined by HPLC analysis of disaccharides resulting from enzymatic degradation of the GAG chains. While heparan sulphate (HS) and heparin are specifically degraded by heparitinases, chondroitinases not only degrade chondroitin sulphate (CS) and dermatan sulphate (DS), but also the protein-free and unsulphated GAG hyaluronan (HA). Thus, disaccharide preparations derived by chondroitinase degradation may be contaminated by HA disaccharides. The latter will often comigrate in HPLC chromatograms with unsulphated disaccharides derived from CS. We have investigated how variation of pH, amount of enzyme, and incubation time affects disaccharide formation from CS and HA GAG chains. This allowed us to establish conditions where chondroitinase degrades CS completely for quantification of all the resulting disaccharides, with negligible degradation of HA, allowing subsequent HA analysis. In addition, we present simple methodology for disaccharide analysis of small amounts of CS attached to a hybrid PG carrying mostly HS after immune isolation. Both methods are applicable to small amounts of GAGs synthesized by polarized epithelial cells cultured on permeable supports.  相似文献   

15.
Mucopolysaccharidoses (MPS) are inherited metabolic diseases from the group of lysosomal storage disorders (LSD). They are caused by genetic defects resulting in the absence or severe deficiency in one of lysosmal hydrolases involved in degradation of glycosaminoglycans (GAG). Partially degraded GAGs are accumulated in lysosomes, causing dysfunction of cells, tissues and organs. Last years did bring some breakthrough discoveries, which were important to understand biochemical mechanisms of MPS appearance and course, as well as to develop therapeutic procedures for these inherited metabolic disorders.  相似文献   

16.
Mucopolysaccharidoses (MPS) are a group of genetic disorders belonging to lysosomal storage diseases. They are caused by genetic defects leading to a lack or severe deficiency of activity of one of lysosomal hydrolases involved in degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate in lysosomes, which results in dysfunctions of cells, tissues, and organs. Until recently, it was assumed that GAG accumulation in cells is the major, if not the only, mechanism of pathogenesis in MPS, as GAGs may be a physical ballast for lysosomes causing inefficiency of cells due to a large amount of a stored material. However, recent reports suggest that in MPS cells there are changes in many different processes, which might be even more important for pathogenesis than lysosomal accumulation of GAGs per se. Moreover, there are many recently published results indicating that lysosomes not only are responsible for degradation of various macromolecules, but also play crucial roles in the regulation of cellular metabolism. Therefore, it appears plausible that previous failures in treatment of MPS (i.e., possibility to correct only some symptoms and slowing down of the disease rather than fully effective management of MPS) might be caused by underestimation of changes in cellular processes and concentration solely on decreasing GAG levels in cells.  相似文献   

17.
Proteoglycans (PGs) from cornea and their relevant glycosaminoglycan (GAG) chains, dermatan sulphate (DS) and keratin sulphate (KS), were examined by electron microscopy following rotary shadowing, and compared with hyaluronan (HA), chondroitin sulphate (CS), alginate, heparin, heparan sulphate (HS) and methyl cellulose. Corneal DS PG had the tadpole shape previously seen in scleral DS FG, and the images from corneal KS PG could be interpreted similarly, although the GAG (KS) chains were very much fainter than those of DS PG GAG. Isolated GAG (KS, DS, CS, HA, etc.) examined in the same way showed images that decreased very significantly in clarity and contrast, in the sequence HA greater than DS greater than CS greater than KS. The presence of secondary and tertiary structures in the GAGs may be at least partly responsible for these variations. HA appeared to be double stranded, and DS frequently self-aggregated, KS and HS showed tendencies to coil into globular shapes. It is concluded that it is unsafe to assume the absence of GAGs, based on these techniques, and quantitative measurements of length may be subject to error. The results on corneal DS PG confirm and extend the hypothesis that PGs specifically associated with collagen fibrils are tadpole shaped.  相似文献   

18.
19.
Glycosaminoglycans (GAGs) form a functional component of connective tissues that affect the structural and functional integrity of the lower urinary tract (LUT). The specific GAGs of physiological relevance are both nonsulfated (hyaluronan) and sulfated GAGs (chondroitin sulphate [CS], dermatan sulphate [DS], keratan sulphate [KS], and heparan sulphate [HS]). As GAG composition in the LUT is hormonally regulated, we postulated that gonadectomy-induced endocrine imbalance alters the profile of GAGs in the canine LUT. Four regions of the LUT (body and neck of the bladder as well as the proximal and distal urethra) from 20 clinically healthy dogs (5 intact males, 5 intact anoestrus females, 4 castrated males, and 6 spayed females) were collected, wax-embedded and sectioned. Alcian blue staining at critical electrolyte concentrations was performed on the sections to determine total GAGs, hyaluronan, total sulfated GAGs, combined components of CS and DS, as well as KS and HS. The amount of staining was evaluated in 3 tissue layers, i.e., epithelium, subepithelial stroma and muscle within a region. Overall, hyaluronan (67.1%) was the predominant GAG in the LUT. Among sulfated GAGs, a combined component of KS and HS was found to be 61.8% and 38.2% for CS and DS. Gonadal status significantly affected GAG profiles in the LUT (P < 0.01). All GAG components were lower (P < 0.05) in body of the bladder of gonadectomized dogs. Total sulfated GAGs and a combined component of KS and HS were lower (P < 0.05) in all 4 regions of gonadectomized dogs. Except for a combined component of CS and DS, decreases in all GAGs were found more consistently in the muscle compared to other tissue layers. Differences between genders became obvious only when considered along with the effect of gonadal status. In gonadectomized dogs, changes in GAG components in the LUT were more consistent in females compared to males; this may partly explain different levels of risk in the development of urinary incontinence between genders. Quantitative differences in GAG profiles found between intact and gonadectomized dogs indicate a potential role of gonadectomy-induced endocrine imbalance in modifying GAG composition in the canine LUT. Profound alteration in the pattern of GAGs in gonadectomized dogs may compromise structural and functional integrity of the LUT and is possibly involved in the underlying mechanism of urinary incontinence post neutering.  相似文献   

20.
Heparan sulphate (HS) glycosaminoglycans (GAGs) are an integral part of the signalling complex of fibroblast derived growth factor (FGF) family members, HS being regarded as a coreceptor. FGFs are also retained in the tissues by binding to HS structures. Early studies on the contribution of the bone marrow stroma to haemopoiesis suggested that cytokines with a role in haemopoiesis were similarly retained in the stroma through interactions with HS. However, the functional outcomes of these cytokines binding HS were poorly understood. Here the GAG-binding properties of cytokines of the four alpha-helical bundle family and the biological consequences of such binding are reviewed. From this analysis it is apparent that although many of these cytokines do bind GAGs, GAG binding is not a consistent feature, nor is the site of GAG binding conserved among these cytokines. The biological outcome of GAG binding depends, in part, on the location of the GAG-binding site on the cytokine. In some cases GAG binding appears to block signalling, whereas in others signalling is likely to be facilitated by binding. It is postulated that the interactions of these cytokines with their receptor complexes evolved independently of GAG binding, with GAG binding being an additional feature for a subset of this cytokine family. Nevertheless, because GAG binding localizes cytokines to sites within tissues, these interactions are likely to be critically important for the biology of these cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号