首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
痫性发作时大量神经元异常同步放电而导致脑内生物能量大量消耗,在此应激状态下,无氧酵解供能系统启动以缓解有氧代谢(三羧酸循环)供能系统的能量供应短缺。研究表明,糖酵解过程作为生物体内重要的旁路供能途径,参与了痫性发作过程,为痫性发作提供能量,而其代谢产物乳酸可能参与痫性发作的终止。现就糖酵解过程参与痫性发作的可能作用机制,从下述两个方面进行综述(1)糖酵解过程在痫性发作能量代谢中的作用;(2)糖酵解过程代谢产物可能影响痫性发作的终止。  相似文献   

2.
有氧糖酵解作为恶性肿瘤最显著的能量代谢特征之一,肿瘤细胞中大约有50%的ATP是通过有氧糖酵解途径合成的,同时糖酵解过程中产生的各种中间代谢产物也是合成蛋白质等生物大分子重要的原料来源。此外酵解途径导致的乳酸增加为肿瘤细胞提供了一个酸性成长环境,有利于其浸润和转移,因此其在维持肿瘤细胞能量需求、合成代谢平衡和肿瘤浸润和转移方面发挥着重要作用。研究表明有氧糖酵解的过程与葡萄糖转运蛋白、己糖激酶、丙酮酸激酶、磷酸果糖激酶等密切相关。目前靶向有氧糖酵解相关转运蛋白和关键限速酶已经成为抗肿瘤药物研发的有效途径,本文对目前天然产物中靶向有氧糖酵解相关蛋白的小分子抑制剂研究最新进展及作用机理进行总结,以期为相关领域药物研究人员提供新的思路和参考。  相似文献   

3.
肿瘤转移是引起肿瘤相关死亡的主要原因,肿瘤细胞的代谢异常在肿瘤转移中扮演重要角色。肿瘤的糖代谢以“Warburg效应”为显著特征,即细胞在有氧条件下也以糖酵解为主要糖代谢途径提供能量。而这种现象在转移性肿瘤细胞中更为突出,表现为葡萄糖的大量摄取、高糖酵解速率和核酸合成速率等,这为肿瘤细胞的快速生长和增殖提供了重要的能量和物质基础。对于肿瘤转移过程中相关代谢改变的研究,将为最终揭示肿瘤转移的机制打下基础。本文综述肿瘤细胞糖代谢中糖酵解、线粒体有氧代谢及磷酸戊糖途径中的变化与肿瘤转移发生的相关性,其结果为进一步从调控肿瘤代谢角度发现新的肿瘤转移控制手段提供了启示。  相似文献   

4.
讲授糖酵解底物的一点体会   总被引:1,自引:1,他引:0  
糖酵解是呼吸作用的一个重要途径,其定义为"淀粉、葡萄糖或其他六碳糖在厌氧状态下分解成丙酮酸的过程"[1,2].糖酵解产物丙酮酸在有氧条件下可彻底氧化生成CO2和H2O,而在厌氧条件下可生成乳酸和乙醇,因此糖酵解是有氧呼吸和厌氧呼吸的共同途径.糖酵解途径是讲授植物呼吸作用过程中的一个教学重点.从糖酵解的定义可知,糖酵解的底物为淀粉、葡萄糖或其他六碳糖,在一些参考书中主要以葡萄糖为底物进行讲解,而对淀粉和其他六碳糖涉及较少[1,3].为使糖酵解途径的教学内容更完善,我们对淀粉和其他六碳糖等底物如何进入糖酵解进行了探讨.  相似文献   

5.
综述体外培养哺乳动物细胞的葡萄糖和谷氨酰胺代谢。大部分的葡萄糖通过糖酵解途径为细胞提供中间代谢物质和能量 ,最终生成乳酸 ,只有很少部分进入TCA循环和磷酸戊糖途径。谷氨酰胺通过谷氨酰胺酶生成谷氨酸 ,并进一步通过谷氨酸脱氢酶或转氨酶生成α -酮戊二酸进入TCA循环 ,为细胞提供中间代谢物质和能量。糖酵解和谷氨酰胺代谢 (glutaminolysis)受葡萄糖和谷氨酰胺的影响而相互调节。  相似文献   

6.
一直以来,乳酸在脑中被视作代谢废物,对其功能认识严重滞后。近年来,越来越多的证据表明,乳酸在多种生理与病理过程中扮演重要角色。在神经细胞中,星形胶质细胞是产生和释放乳酸的主要细胞源,该细胞通过有氧糖酵解过程生成乳酸,随后经跨膜通道释放至胞外进入神经元为其供能。在中枢神经系统中,乳酸对稳态调节发挥着十分重要的作用。乳酸主要通过两种途径,即代谢途径(作为能量底物)与信号途径(作为信号分子)调控神经元的功能活动,广泛参与神经元能量代谢、兴奋性、可塑性、学习记忆及神经系统发育等生理过程调节,亦参与抑郁行为、阿尔兹海默病(AD)和脑损伤等病理过程的调节。在脑组织中,存在着乳酸特异性受体(GPR81),乳酸与其结合后调控胞内的第二信使。此外,还发现乳酸可通过未知受体调节神经元的兴奋性以及作为信号分子的其他作用。本文就乳酸作为能量底物和信号分子及其参与相关神经疾病的研究进展进行阐述,旨在为相关中枢神经系统疾病防治提供新思路。  相似文献   

7.
糖酵解可以为机体迅速提供能量,有氧糖酵解更是肿瘤代谢的主要方式。丙酮酸激酶(pyruvate kinase,PK)是糖酵解途径的限速酶,存在4种类型,其中M2型PK(PKM2)分布最广泛,功能最重要。PKM2具有激酶催化活性,可以异位至线粒体影响细胞生存,进入细胞核后可以调控基因表达,可以作为肿瘤诊断的指标、治疗的靶点和预后的参考。对PKM2功能及其调节机制的了解,可以为疾病的诊断和治疗提供新思路。  相似文献   

8.
肿瘤能量代谢机制研究进展   总被引:3,自引:0,他引:3  
细胞的能量主要来自糖酵解和线粒体的有氧氧化.细胞活性和能量状态密切相关,恶性肿瘤由于其生长迅速,常常出现葡萄糖摄取量增高、糖酵解增加和乳酸堆积现象.通过介绍肿瘤能量代谢机制研究进展,结合代谢成像技术,将会有助于深入揭示肿瘤能量代谢改变与肿瘤进展的因果关联,为靶向能量代谢的肿瘤治疗策略提供新的视野和契机.  相似文献   

9.
<正>在有氧的条件下,许多肿瘤细胞都会利用有氧糖酵解来提供能量和支持细胞生长。这一细胞代谢的转变导致糖酵解的上调和乳酸产生的增加。在有氧糖酵解中探索出限制性的步骤,并通过代谢性手段来抑制肿瘤细胞反应,已经成为代谢性治疗肿瘤的关键问题。在临床中发现,大约1/4患有B细胞急性淋巴细胞白血病的病人中,B细胞中会出现致癌激酶BCR-Abl,这种病人一般预  相似文献   

10.
怎样证明无氧呼吸比有氧呼吸释放能量少生物体在进行生命活动的过程中,必须不断地消耗能量.而能量的产生依赖于呼吸作用。通过呼吸作用,将体内有机物分解,并释放出能量,供生命活动所需。一般情况下,生物呼吸作用的方式有两种类型:有氧呼吸和无氧呼吸,但是,无氧呼...  相似文献   

11.
低氧微环境中肿瘤的能量代谢   总被引:1,自引:0,他引:1  
处于低氧微环境中的肿瘤细胞,其血管生成和代谢方式的改变使之能在低氧环境中生存及增殖。Warburg早已发现肿瘤细胞的代谢方式的改变.即在有氧环境中也优先利用糖酵解而非有氧呼吸来获得能量。与有氧呼吸有关的酶,如COX、SDH、FH,发生改变及抑癌基因p53的突变与其发生机制有关。  相似文献   

12.
瓦氏效应——哺乳动物生殖过程中的有氧糖酵解   总被引:1,自引:0,他引:1  
糖代谢是生物体赖以生存的基本生化过程之一.哺乳动物体内不同细胞对葡萄糖的利用方式不同.摄氧充足时,细胞通过氧化磷酸化在线粒体中进行有氧呼吸;缺氧的细胞则选择抑制氧化磷酸化,通过糖酵解产生乳酸.但有些细胞在有氧条件下也能进行糖酵解,从而产生大量的乳酸,这种糖酵解途径称为瓦氏效应.以前认为瓦氏效应主要存在于肿瘤细胞中,但近来发现在哺乳动物的生殖过程中也存在瓦氏效应.本文综述了哺乳动物生殖发育过程的瓦氏效应及其与一些生殖疾病的关系.  相似文献   

13.
郑杰 《生命科学》2012,(4):310-315
正常细胞代谢活动所需要的能量主要由线粒体氧化磷酸化产生的ATP提供。与正常细胞不同,肿瘤细胞糖酵解增强,氧化磷酸化功能降低。长期以来,肿瘤细胞的有氧糖酵解被认为是由于线粒体出现不可逆的损伤。最近有不少研究结果对这一观点提出质疑,认为多数肿瘤的线粒体氧化磷酸化功能是完好的,肿瘤有氧糖酵解的改变被认为是其他多种因素(例如癌基因、肿瘤抑制基因、低氧微环境、mtDNA突变等)综合作用的结果。  相似文献   

14.
非增殖细胞将葡萄糖代谢为丙酮酸,进而进入线粒体的三羧酸循环,通过氧化磷酸化产生还原当量和ATP。然而,增殖细胞如激活的T细胞和癌细胞,它们进行糖酵解,在胞浆中将丙酮酸代谢为乳酸,有充足的氧气可以进行氧化磷酸化(OX-PHOS)。这一现象被称为Warburg效应。显然,后者在提供能量方面效率不如前者,提示这一过程可能有其他功能。之前有学者认为有氧糖酵解在增殖产生子细胞营养物质生物合成的过程中是必需的。但是氧化磷酸化转变为有氧糖酵解是T细胞激活而不是增殖的标志,所以作者希望探索有氧糖酵解对T细胞是否有增殖以外其他方面的功能。他们的研究成果发表在2013年6月6日在线出版的《细胞》(cell)杂志上。  相似文献   

15.
一株能够利用血红素进行有氧呼吸的乳酸乳球菌   总被引:2,自引:0,他引:2  
付良  刘飞  霍贵成 《微生物学报》2008,48(9):1256-1259
[目的]乳酸乳球菌在呼吸状态下,生长速度快,生物产量大,是改善发酵剂生产效率的潜在途径之一,本研究旨在观察由传统乳制品中分离得到的乳酸乳球菌在血红素存在状态下有氧呼吸情况以及代谢的变化.[方法]对本实验室保藏的12株乳酸乳球菌进行有氧培养实验,比较其生物量和代谢产物的差异.观测在4℃下储藏30 d后的活菌数差异.[结果]筛选出一株在血红素存在条件下进行有氧呼吸的菌株KLDS 4.0316,与没有添加血红素的原菌株相比生物量增长了50%,在4℃储藏30 d后,添加血红素并振荡的活菌数依然维持在100 CFU/mL,而未添加血红素未振荡检测不到活菌.在血红素存在下,KLDS 4.0316代谢产物发生了变化,与没有添加血红素的原菌株相比乳酸产量减少了48%.[结论]KLDS 4.0316在血红素存在条件下能够进行有氧呼吸,乳酸产生减少,生物量增加.  相似文献   

16.
巴氏醋杆菌高酸度醋发酵过程的能量代谢分析   总被引:2,自引:0,他引:2  
【目的】初步分析了Acetobacter pasteurianus CICIM B7003-02在醋酸发酵过程中的能量代谢状况, 通过强化细胞能量代谢水平以提升菌株高酸发酵的产酸强度。【方法】探明A. pasteurianus CICIM B7003-02在高酸度醋发酵的不同阶段中三羧酸循环底物含量、乙醇呼吸链酶活及能量代谢酶基因的转录水平等代谢特点, 分析用于醋酸发酵的产能代谢途径及其作用。【结果】发现A. pasteurianus CICIM B7003-02在醋酸发酵初期, 主要通过苹果酸/琥珀酸回补偶联有氧呼吸途径产能。进入醋酸快速积累阶段, 乙醇呼吸链为主要供能代谢途径。发酵后期苹果酸/琥珀酸回补途径配合乙醇呼吸链供能。基于上述研究, 采取添加琥珀酸和苹果酸强化细胞产能, 促进高酸度醋发酵强度。【结论】能量供给影响醋杆菌耐酸能力和醋酸生产能力。确定乙醇呼吸链为醋酸发酵的主要供能系统。强化细胞产能手段可达到提高醋酸发酵强度的目的。  相似文献   

17.
靶向肿瘤细胞代谢过程中关键调控分子抑制肿瘤细胞生长的研究日益成为热点。目前,研究肿瘤细胞氧化磷酸化和有氧糖酵解主要是应用Clark氧电极法测定细胞氧耗率以及对相关中间代谢物的测定,如乳酸和葡萄糖。但是,这些方法测定的指标相对单一,而且过程繁琐。该文详细介绍了生物能量分析仪在研究肿瘤细胞糖酵解和线粒体氧耗率中的应用,并通过研究肿瘤细胞应用阿霉素及相关药物处理后生物能量代谢的变化,深入探讨了这一方法在研究肿瘤细胞生物能量代谢方面中的优越性。研究结果表明,羰基氰–对–三氟甲氧基本腙(carbonylcyanide p-trifluoro methoxyphenylhydrazone,FCCP)的浓度以及细胞数量对于研究肿瘤细胞的氧耗率十分关键,应用阿霉素能够显著抑制肿瘤细胞的有氧糖酵解和线粒体氧耗率。通过该文的介绍,期望能为肿瘤细胞生物能量代谢研究提供进一步的参考。  相似文献   

18.
正细胞代谢的改变是许多肿瘤的一个重要特征。在肿瘤细胞中,有氧糖酵解和脂质生成的增加能提供肿瘤细胞生长所需的能量和脂质。然而葡萄糖代谢和脂质生成通路之间的相互联系依然不清楚。本文的研究人员立足于此,探讨了葡萄糖代谢和脂质生成通路之间的联系,发现葡萄糖能通过胰岛素非依赖的通路来控制SCAP并促进脂质生成。研究表明,EGFR信号能增加肿瘤细胞对葡萄糖的摄取。细胞内的葡萄糖主要进入了糖酵解通路的分支己糖胺生物合成  相似文献   

19.
关于"三羧酸循环"的教学探讨   总被引:1,自引:0,他引:1  
三羧酸循环(tricarboxylic acid cycle,TCAcycle,也称柠檬酸循环)是在高等植物线粒体中发生的重要的碳代谢途径.它是呼吸作用中葡萄糖有氧分解的主要方式,将糖酵解产物丙酮酸逐步氧化分解为C O 2和H 2O,并生成N A D H、FADH2、ATP.  相似文献   

20.
肿瘤细胞与人体正常细胞在代谢上有些不同,这主要体现在能量代谢和物质代谢上。肿瘤细胞能量代谢的特点表现在活跃地摄取葡萄糖和谷胺酰胺,进行有氧糖酵解(Warburg效应)。这种看上去很不经济的能量供给方式对肿瘤细胞却是必需的,它既为肿瘤细胞的不断生长提供能量,也为它们提供了生物合成的原料。肿瘤不同的代谢方式既是挑战也是机遇,弄清肿瘤细胞的代谢机制,对肿瘤早期诊断和靶向治疗具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号