首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gastrointestinal transit during mild exercise   总被引:1,自引:0,他引:1  
Although exercise is often recommended as therapy for constipation, almost nothing is known of the effects of exercise on rates of movement of material in the gastrointestinal tract. In this study we investigated the influence of mild exercise on transit of a liquid meal from the mouth to the large intestine. Orocecal transit time was determined by a consistent elevation of H2 concentration in a rebreathing apparatus after ingestion of 30 g lactulose; the lactulose was part of a 360-kcal, 350-ml liquid meal. Comparison of transit time was made, in 12 young healthy subjects, between seated rest and a treadmill walk at 5.6 km/h up a 2% grade. The walk elevated heart rate from 64 +/- 4 to 109 +/- 5 beats/min, O2 uptake (VO2) from 0.29 +/- 0.02 to 1.20 +/- 0.07 l/min STPD, and final rectal temperature from 37.0 +/- 0.1 to 38.3 +/- 0.1 degrees C (all P less than 0.01). Exercise speeded transit of the liquid meal, with mean rises in H2 concentration taking place 66 +/- 10 min after ingestion at rest, compared with 44 +/- 6 min after food intake during exercise (P less than 0.02). H2 concentrations in the rebreathing apparatus showed similar base lines in the two experiments, and quantitative increases in H2 concentration, although shifted in time by exercise, were otherwise identical. Subjects with the slowest resting transit rates showed the largest exercise effects (r = 0.79, P less than 0.05). These results indicate that mouth-to-cecum transit of at least the first portion of a liquid meal-based nonabsorbable carbohydrate marker is significantly accelerated during mild exercise.  相似文献   

2.
Leptin, an ob gene product of adipocytes, plays a key role in the control of food intake and energy expenditure but little is known about leptin response to strenuous exercise in fasted and fed subjects or before and after blood donation. This study was designed to determine the immediate effects of strenuous exercise in healthy volunteers under fasting or fed conditions and before and one day after blood donation (450 ml) on plasma levels of leptin and gut hormones [gastrin, cholecystokinin (CCK), pancreatic polypeptide (PP) and insulin], as well as on "stress" hormones (cortisol, catecholamines and growth hormone. Two groups (A and B) of healthy non-smoking male volunteers were studied. All subjects performed incremental exercise tests until exhaustion (up to maximal oxygen uptake--VO2max), followed by 2 h of rest session. Group A perfomed the tests on a treadmill, while group B on a cycloergometer. In group A, one exercise was performed under fasting conditions and the second following ingestion of a standard liquid meal. In group B, one exercise test was performed as a control test and the second 24 h after blood donation (450 ml). Blood samples were withdrawn 5 min before the start of the test, at the VO2max, and 2 h after finishing the exercise. No significant change in plasma teptin were observed both immediately and 2 h after the exercise in fasted subjects, but after the meal the plasma leptin at VO2max and 2 h after the test was significantly higher, while after blood donation was significantly reduced. The postprandial rise in plasma leptin was accompanied by a marked increment in gut hormones; gastrin, CCK and PP and stress hormones such as norepinephrine, cortisol and GH. These hormonal changes could contribute to the postprandial rise in plasma leptin concentrations, while the fall of leptin after blood donation could be attributed to the inadequate response of stress hormones and autonomic nervous system to exhausting exercise. We conclude that strenuous physical exercise; 1) fails to affect plasma leptin level but when performed after meal but not after blood withdrawal it results in an increase and fall in plasma leptin, and 2) the release of gut hormones (gastrin, CCK and PP) and stress hormones (norepinephrine, cortisol, GH) increase immediately after exercise independently of feeding or blood donation and 3) following blood donation the strenuous exercise resulted in a marked reduction in the plasma leptin, cortisol and GH concentrations, possibly due to the impairment in the autonomic nervous control of these hormones.  相似文献   

3.
We investigated changes in arterial PCO2 (PaCO2) and pulmonary ventilation (VE) in normal, carotid chemoreceptor-denervated, and hilar nerve-denervated ponies during intravenous lactic acid infusion at rest and treadmill exercise at 1.8 mph-5% grade (mild) and 1.8 mph-15% grade (moderate). Lactic acid, (0.5 M) infusion of 0.10, 0.13, and 0.20 ml.min-1.kg-1 at rest and mild and moderate exercise increased arterial [H+] linearly throughout the 10 min of acid infusion. At 10 min of infusion, arterial [H+] had increased approximately 20 nmol/l (0.2 pH units) for each condition and group. Under most conditions, the temporal pattern of PaCO2 during acid infusion was biphasic. At rest and during mild exercise in all groups, and in carotid chemoreceptor-denervated ponies during moderate exercise, PaCO2 increased approximately 2 Torr (P less than 0.05) during the first 2 min of acid infusion. However, in normal ponies during moderate exercise, PaCO2 was not changed from control in the first 2 min of infusion. Between 2 and 10 min of infusion at rest and mild and moderate exercise in all groups, there was a 5-Torr significant decrease in PaCO2, which did not differ (P greater than 0.10) between groups. VE increased between 15-30 s and 2 min of infusion, but VE changed minimally between 2 and 10 min of infusion at rest and exercise in all groups of ponies. We conclude that lactacidosis does increase VE at rest and submaximal exercise in the pony.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hormone and substrate responses to mild and heavy treadmill exercise were compared in women who used oral contraceptives (OC group; n = 7) and in normally menstruating women (control group; n = 8). Venous blood samples were obtained before exercise (-5 min), during exercise (15, 30, 45, and 60 min), and 30 min after exercise. All samples were analyzed for glucose, lactate, free fatty acids (FFA), glycerol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), human growth hormone (hGH), cortisol, insulin, estradiol (E2), and progesterone (P). Substrate patterns during exercise were not altered by the phase of the menstrual cycle or OC usage. However, in the OC group the FFA concentrations were consistently higher during mild exercise and the glucose concentrations were lower at rest and during exercise than in the control group (P less than 0.05). No differences in lactate or glycerol responses were observed between the groups (P greater than 0.05). The responses of insulin and hGH to exercise were not related to the OC use per se but rather to the steroid status, either endogenous or exogenous. Specifically, during the steroid phases (OC use phase and luteal phase) 1) insulin concentrations were not quite as markedly reduced (i.e., 12% higher when luteal phase and OC usage phase data were combined; P less than 0.05), and 2) hGH concentrations at rest and during light exercise were higher in the OC group during the OC use phase (P less than 0.05). LH patterns were not affected by exercise (P greater than 0.05), but a slight decrease was found in FSH (P less than 0.05). Increments in P and E2 were observed in the control group in both the follicular and luteal phase (P less than 0.05), but much greater increments in P occurred in the luteal phase than in the follicular phase (P less than 0.05). In contrast to the control group, no increments in P, E2, or cortisol occurred in the OC users during exercise (P greater than 0.05). Therefore the new observations in this study are that 1) insulin and growth hormone respond in a complex manner during exercise with either the phase of the menstrual cycle or the phases of OC use and disuse and 2) the steroid concentrations (P, E2, cortisol) are increased in the controls but not in the OC users during exercise. The latter point suggests that normal steroid increments are due to an increased rate of secretion rather than a decrease in the hepatic clearance of these steroids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The aim of this study was to evaluate serum and saliva adrenocortical hormones and their relationships at rest and during submaximal exercise and recovery in 9 obese diabetic middle-aged men (BMI: 35.2 ± 1.6 kg/m (2)). Blood and saliva samples were taken at rest, every 10 min of a 30-min cycling exercise at 70% of maximal heart rate, and after 10 min of recovery in order to analyze cortisol, dehydroepiandrosterone sulfate (DHEA-S) and dehydroepiandrosterone (DHEA). Serum and saliva cortisol increased significantly during recovery (p<0.05), but no significant difference was observed between the rest, exercise, and recovery DHEA-S and DHEA concentrations. A strong correlation was found at rest between both serum and saliva cortisol (r=0.72, p<0.001) and DHEA-S and DHEA (r=0.93, p<0.001). Serum DHEA-S and saliva DHEA remained strongly correlated during and after the submaximal exercise (r=0.81, p<0.001), whereas a weaker but still significant relationship was observed between serum and saliva cortisol during and after the exercise (r=0.52, p<0.001). In conclusion, these results suggest that saliva adrenocortical hormones, and especially saliva DHEA, may offer a practical surrogate for serum concentrations during both rest and exercise in obese diabetic men.  相似文献   

6.
We examined the effects of menstrual cycle phase and oral contraceptive (OC) use on triglyceride mobilization during 90 min of rest and 60 min of leg ergometry exercise at 45 and 65% peak O(2) uptake (Vo(2 peak)) in eight moderately physically active, eumenorrheic women (24.8 +/- 1.2 yr). Subjects were tested during the follicular phase (FP) and the luteal phase (LP) before OC use and during the inactive phase (IP) and high-dose phase (HP) after 4 complete mo of OC use. Glycerol rate of appearance (R(a)), a measure of triglyceride mobilization, was determined in a 3-h postabsorptive state using a primed constant infusion of [1,1,2,3,3-(2)H]glycerol. Before OC use (BOC), there were no significant differences between FP and LP in any of the variables studied. Dietary composition, exercise patterns, plasma glycerol concentrations, growth hormone concentrations, and exercise respiratory exchange ratio did not change with OC use. However, 4 mo of OC use significantly (P < 0.05) increased glycerol R(a) in HP during exercise at 45% Vo(2 peak) (6.2 +/- 0.2, 6.5 +/- 0.4, and 7.7 +/- 1.1 micromol.kg(-1).min(-1) for BOC, IP, and HP, respectively) and in IP and HP at 65% Vo(2 peak) (6.6 +/- 0.1, 8.2 +/- 0.6, and 8.1 +/- 0.7 micromol.kg(-1).min(-1) for BOC, IP, and HP, respectively). Plasma cortisol concentrations were significantly higher with OC use at rest and during exercise at 45 and 65% Vo(2 peak). In summary, although fluctuations of endogenous ovarian steroids have little effect on triglyceride mobilization, the synthetic ovarian steroids found in OCs increase triglyceride mobilization and plasma cortisol concentrations in exercising women. We conclude that the hierarchy of effects of ovarian steroids and their analogs on triglyceride mobilization in exercising women is as follows: energy flux > OC use > recent carbohydrate nutrition, menstrual cycle effects.  相似文献   

7.
The purpose of this study is to examine plasma cortisol and adrenocorticotropin (ACTH) levels following a brief high-intensity bout of exercise. Each subject (n = 6) performed a 1-min bout of exercise on a cycle ergometer at 120% of his maximum O2 uptake. Blood samples were collected at rest, immediately following the exercise bout, and at 5, 15, and 30 min postexercise. Mean (+/- SE) plasma ACTH levels increased significantly (P less than 0.05) from 2.2 +/- 0.4 pmol/l at rest to 6.2 +/- 1.7 pmol/l immediately following exercise. Mean (+/- SE) plasma cortisol levels increased significantly from 0.40 +/- 0.04 mumol/l at rest to 0.52 +/- 0.04 mumol/l at 15 min postexercise. These data show that brief high-intensity exercise results in significant increases in plasma cortisol and ACTH levels. Furthermore, the temporal sequence between the two hormones suggests that the increase in plasma cortisol levels following brief high-intensity exercise is the result of ACTH-induced steroidogenesis in the adrenal cortex.  相似文献   

8.
Effects of a single exercise bout on insulin action were compared in men (n = 10) and women (n = 10). On an exercise day, subjects cycled for 90 min at 85% lactate threshold, whereas on a rest (control) day, they remained semirecumbent. The period of exercise, or rest, was followed by a 3-h hyperinsulinemic-euglycemic clamp (30 mU.m(-2).min(-1)) and indirect calorimetry. Glucose kinetics were measured isotopically by using an infusion of [6,6-2H2]glucose. Glucose infusion rate (GIR) during the clamp on the rest day was not different between the genders. However, GIR on the exercise day was significantly lower in men compared with women (P = 0.01). This was mainly due to a significantly lower glucose rate of disappearance in men compared with women (P = 0.05), whereas no differences were observed in the endogenous glucose rate of appearance. Nonprotein respiratory quotient (NPRQ) increased significantly during the clamp from preclamp measurements in men and women on the rest day (P < 0.01). Exercise abolished the increase in NPRQ seen during the clamp on the rest day and tended to decrease NPRQ in men. Our results indicate the following: 1) exercise abolishes the usual increase in NPRQ observed during a hyperinsulinemic-euglycemic clamp in both genders, 2) men exhibit relatively lower whole body insulin action in the 3-4 h after exercise compared with women, and 3) gender differences in insulin action may be explained by a lower glucose rate of disappearance in the men after acute exercise. Together, these data imply gender differences in insulin action postexercise exist in peripheral tissues and not in liver.  相似文献   

9.
Modest elevations in pancreatic polypeptide (PP) have been observed during exercise while fasting. To determine whether the PP response to a meal is similarly affected by exercise, seven healthy subjects were studied on two occasions. First, the postprandial PP response was determined during rest and then compared to a meal which was subsequently followed by a 45 min period of moderate exercise. Postprandial exercise significantly (P less than 0.01) enhanced the plasma PP response to peak levels of 182 +/- 22 pM versus 85 +/- 22 pM at rest. Concomitantly the plasma glucose fell to a nadir of 84 +/- 4 mg/dl which was significantly (P less than 0.01) below the rest level of 129 +/- 8 mg/dl. Although the rise in PP paralleled the fall in glucose, there was little relationship (r = 0.27) between the incremental changes in these two parameters. Thus, exercise is a natural setting which augments the plasma PP response to a meal. The mechanism may be related to the enhanced cholinergic vagal activity associated with the attendant fall in glycemia.  相似文献   

10.
Related to hepatic autoregulation we evaluated hypotheses that 1) glucose production would be altered as a result of a glycerol load, 2) decreased glucose recycling rate (Rr) would result from increased glycerol uptake, and 3) the absolute rate of gluconeogenesis (GNG) from glycerol would be positively correlated to glycerol rate of disappearance (R(d)) during a glycerol load. For these purposes, glucose and glycerol kinetics were determined in eight men during rest and during 90 min of leg cycle ergometry at 45 and 65% of peak O2 consumption (.VO2 (peak)). Trials were conducted after an overnight fast, with exercise commencing 12 h after the last meal. Subjects received a continuous infusion of [6,6-(2)H(2)]glucose, [1-(13)C]glucose, and [1,1,2,3,3-(2)H(5)]glycerol without (CON) or with an additional 1,000 mg (rest: 20 mg/min; exercise: 40 mg/min) of [2-(13)C]- or unlabeled glycerol added to the infusate (GLY). Infusion of glycerol dampened glucose Rr, calculated as the difference between [6,6-(2)H(2)]- and [1-(13)C]glucose rates of appearance (R(a)), at rest [0.35 +/- 0.12 (CON) vs. 0.12 +/- 0.10 mg. kg(-1). min(-1) (GLY), P < 0.05] and during exercise at both intensities [45%: 0.63 +/- 0.14 (CON) vs. 0.04 +/- 0.12 (GLY); 65%: 0.73 +/- 0.14 (CON) vs. 0.04 +/- 0.17 mg. kg(-1). min(-1) (GLY), P < 0.05]. Glucose R(a) and oxidation were not affected by glycerol infusion at rest or during exercise. Throughout rest and both exercise intensities, glycerol R(d) was greater in GLY vs. CON conditions (rest: 0.30 +/- 0.04 vs. 0.58 +/- 0.04; 45%: 0.57 +/- 0.07 vs. 1.19 +/- 0.04; 65%: 0.73 +/- 0.06 vs. 1.27 +/- 0.05 mg. kg(-1). min(-1), CON vs. GLY, respectively). Differences in glycerol R(d) (DeltaR(d)) between protocols equaled the unlabeled glycerol infusion rate and correlated with plasma glycerol concentration (r = 0.97). We conclude that infusion of a glycerol load during rest and exercise at 45 and 65% of .VO2(peak) 1) does not affect glucose R(a) or R(d), 2) blocks glucose Rr, 3) increases whole body glycerol R(d) in a dose-dependent manner, and 4) results in gluconeogenic rates from glycerol equivalent to CON glucose recycling rates.  相似文献   

11.
In order to reveal the influence of clothing skin pressure on digestion of food through the gastrointestinal tract, we examined the absorption of dietary carbohydrate and orocecal transit time of a test meal by means of a breath hydrogen test on 7 healthy young women. In this experiment, we collected breath samples from the participants wearing loose-fitting experimental garment on the second day of the experiment and from the same participants but wearing an additional tight-fitting girdle on the following day for 16 hours and 9 hours, respectively. Skin pressure applied by a girdle on participant's waist, abdomen and hip region was 15.5 +/- 0.4 mmHg (mean +/- SE), 11.0 +/- 0.2 mmHg, and 13.6 +/- 0.6 mmHg, respectively, and the values were 2-3 times larger than those of the experimental garment. The hydrogen concentration vs. time curve showed that breath hydrogen levels at its peaks (15:00, 15:30, 16:00, 16:30, and 17:00 hr) on the third day of the experiment were significantly higher than those of the corresponding time on the second day (p < 0.05 at 17:00 and 15:00, p < 0.01 at 15:00, 16:00 and 16:30). Consequently, significantly pronounced breath hydrogen excretion was observed under the "pressure" clothing condition (p < 0.01). On the other hand, the transit time of the test meal for the subjects wearing a girdle did not differ significantly from that for the subjects wearing the garment of less pressure (270 +/- 18 minutes and 263 +/- 21 minutes, respectively). These results indicate that the clothing skin pressure has an inhibitory effect on the absorption of dietary carbohydrate in the small intestine, but no effect on the orocecal transit time of a meal.  相似文献   

12.
Increased resting ventilation (VE) and hypoxic and hypercapnic ventilatory responses occur during pregnancy in association with elevations in female hormones and metabolic rate. To determine whether increases in progestin, estrogen, and metabolic rate produced a rise in VE and hypoxic ventilatory response (HVR) similar in magnitude to that observed at full-term pregnancy, we studied 12 postmenopausal women after 1 wk of treatment with placebo, progestin (20 mg tid medroxyprogesterone acetate), estrogen (1.25 mg bid conjugated equine estrogens), and combined progestin and estrogen. Progestin alone or with estrogen raised VE at rest and decreased end-tidal PCO2 (PETCO2) by 3.9 +/- 0.8 and 3.3 +/- 0.6 Torr, respectively (both P less than 0.05), accounting for approximately one-fourth of the rise in VE and three-fourths of the PETCO2 reduction seen at full-term pregnancy. The addition of mild exercise sufficient to raise metabolic rate by 33-36% produced the remaining three-fourths of the rise in VE but no further decline in PETCO2. Combined progestin and estrogen raised HVR and hypercapnic ventilatory response more consistently than progestin alone and could account for one-half of the increase in HVR seen at full-term pregnancy. Mild exercise alone did not raise HVR, but when exercise was combined with progestin and estrogen administration, HVR rose by amounts equal to that seen at full-term pregnancy. We concluded that female hormones together with mild elevation in metabolic rate were likely responsible for the pregnancy-associated increases in VE and HVR.  相似文献   

13.
The influence of work intensity and duration on the white blood cell (WBC), lymphocyte (L) and platelet (P) count response to exercise was studied in 16 trained subjects (22 +/- 5.4 years, means +/- SD). They performed three cyclo-ergospirometric protocols: A) 10 min at 150 W followed by a progressive test (30 W/3 min) till exhaustion; B) constant maximal work (VO2max); C) a 45 min Square-Wave Endurance Exercise Test (SWEET), (n = 5). Arterial blood samples were taken: at rest, submaximal and maximal exercise in A; maximal exercise in B; 15th, 30th and 45th min in the SWEET. Lactate, [H+], PaCO2, PaO2, [Hct], Hb, cortisol, ACTH, total platelet volume (TPV), total blood red cell (RBC), WBC, L and P were measured. At 150 W, WBC, L, P, and TPV increased. VO2max did not differ between A and B, but a difference was found in total exercise time (A = 25 +/- 3 min; B = 7 +/- 2 min, p less than 0.001). In A, at VO2max, the increase was very small for Hct, [Hb], and RBC (10%), in contrast with large changes for WBC (+93%), L (+137%), P (+32%), TPV (+35%), [H+] (+39%), lactate (+715%), and ACTH (+95%). At VO2max there were no differences in these variables between A and B. During the SWEET: WBC, L, P, TPV and ACTH increased at the 15th min as much as in VO2max, but no difference was observed between the 15th, 30th and 45th min, except for ACTH which continued to rise; the lactate increase during the SWEET was about half (+341%) the value observed at VO2max, and [H+] did not vary with respect to values at rest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ten healthy male subjects took part in the study. They performed three consecutive bouts of static handgrip at 30% of maximal voluntary contraction (MVC), using two hands alternately and without rest intervals. Blood pressure was measured every 30 s and ECG was recorded continuously. Blood samples for arginine vasopressin (AVP), growth hormone (GH), adrenocorticotrophic hormone (ACTH) and cortisol determinations were taken at rest, after each exercise bout, as well as at 10 and 30 min after the last one. During the whole period of exercise (9 min) blood pressure and heart rate were elevated. The effort caused a significant increase in the plasma AVP concentration. In the majority of subjects the peak values occurred after the first or second exercise bout and were followed by a rapid decline of the hormone concentration. Changes in GH, ACTH and cortisol concentrations were insignificant; however, in seven of the ten subjects, considerably elevated plasma GH levels were found at the end of the third exercise bout and/or 10 min after its cessation.  相似文献   

15.
Eight trained men cycled at 70% peak oxygen uptake for 120 min followed by a 30-min performance cycle after ingesting either a high-glycemic index (HGI), low-glycemic index (LGI), or placebo (Con) meal 30 min before exercise. Ingestion of HGI resulted in an elevated (P<0.01) blood glucose concentration compared with LGI and Con. At the onset of exercise, blood glucose fell (P<0.05) such that it was lower (P<0.05) in HGI compared with LGI and Con at 15 and 30 min during exercise. Plasma insulin concentration was higher (P<0.01) throughout the rest period after ingestion of HGI compared with LGI and Con. Plasma free fatty acid concentrations were lower (P<0.05) throughout exercise in HGI compared with LGI and Con. The rates of [6,6-(2)H]glucose appearance and disappearance were higher (P<0.05) at rest after ingestion and throughout exercise in HGI compared with LGI and Con. Carbohydrate oxidation was higher (P<0.05) throughout exercise, whereas glycogen use tended (P = 0.07) to be higher in HGI compared with LGI and Con. No differences were observed in work output during the performance cycle when comparing the three trials. These results demonstrate that preexercise carbohydrate feeding with a HGI, but not a LGI, meal augments carbohydrate utilization during exercise but does not effect exercise performance.  相似文献   

16.
We evaluated the hypothesis that fatty acid reesterification would be increased during rest and exercise in the midluteal menstrual cycle phase and during oral contraceptive use, when ovarian hormone concentrations are high, compared with the early follicular phase. Subjects were eight moderately active, weight-stable, eumenorrheic women (24.8 +/- 1.2 yr, peak oxygen consumption = 42.0 +/- 2.3 ml.kg(-1).min(-1)) who had not taken oral contraceptives for at least 6 mo. Plasma free fatty acid (FFA) kinetics were assessed in the 3-h postprandial state by continuous infusion of [1-(13)C]palmitate and [1,1,2,3,3-(2)H]glycerol during 90 min of rest and 60 min of exercise at 45% and 65% peak oxygen consumption in the early follicular and midluteal menstrual cycle phases and during the inactive- and high-dose phases following 4 mo of oral contraceptive use. Plasma FFA rates of appearance, disappearance, and oxidation increased significantly from rest to exercise with no differences noted between menstrual cycle or oral contraceptive phases or exercise intensities. Compared with either menstrual cycle phase, oral contraceptive use resulted in an increase in plasma-derived fatty acid reesterification and a decrease in the proportion of plasma FFA rate of disappearance that was oxidized at rest and during exercise. Endogenous and exogenous synthetic ovarian hormones do not exert a measurable influence on plasma FFA turnover or oxidation at rest or during moderate-intensity exercise in the 3-h postprandial state when carbohydrate use predominates. The increase in whole body lipolytic rate during exercise noted previously with oral contraceptive use is not matched by an increase in fatty acid oxidation and results in an increase in reesterification. Synthetic ovarian hormones contained in oral contraceptives increase lipolytic rate, but fatty acid oxidation during exercise is determined by exercise intensity and its metabolic and endocrine consequences.  相似文献   

17.
When an orally administered opiate agonist is systemically bioavailable, the relative activity of that opioid in delaying gastrointestinal transit (GIT) depends on its relative action at central and peripheral sites. This in turn depends on the density of opioid receptor specific subtypes at those sites of action in the species under study. In rats the kappa selective agonist U-50,488H has no effect on GIT. We have found that this same agonist is equipotent to mu agonists morphine and 1-methadone in delaying the orocecal transit of a charcoal meal when administered orally to guinea pigs. Thus, both kappa as well as mu receptor subtypes are involved in the mechanisms of opiate induced slowing of GIT in the guinea pig in contrast to the rat. Interspecies differences must be considered when determining the contribution of opiate receptor subtypes to the mechanisms of opiate-induced constipation.  相似文献   

18.
Leptin is a tissue-derivative adipokine that regulates appetite, food intake and energy expenditure. It is still not clear how exercise affects plasma leptin concentration in horses. The aim of this study was to evaluate the influence of exercise intensity and duration on plasma leptin levels in working horses. A total of 38 horses were prospectively included in the study and grouped according to the type of exercise they performed: dressage (six stallions, group D), jumping (12 stallions, group J), race (12 Thoroughbred horses, six stallions and six mares, group R) and harness (10 light draft stallions, group H). Blood samples were taken both before and after routine exercise (immediately after the exercise, 30 min and 24 h after). Blood lactic acid (LA) and plasma concentration of leptin, cortisol, uric acid, triacylglycerols, glycerol and free fatty acids were determined. Immediately after exercise, group R had the highest level of LA, whereas groups D and J had the lowest levels. A significant increase in plasma leptin concentration was stated only in group H in samples taken immediately after the end of the exercise period and 30 min after the exercise period, as compared with the values obtained at rest. A significant increase in plasma cortisol concentration was found immediately after the end of the exercise period in groups R and H. Leptin exercise-to-rest ratio was significantly correlated with cortisol exercise-to-rest ratio (r=0.64; P<0.001). The increase in plasma leptin concentration in exercised horses was related to the increased plasma cortisol concentration and took place only during long-lasting exercise, which was not intensive.  相似文献   

19.
We examined the effects of exercise intensity and menstrual cycle phase on glucose flux rates during rest and exercise in rested and fed (3-h postabsorptive) women. Eight moderately active, eumenorrheic women were studied under conditions of rest (90 min) and exercise (60 min, leg ergometer cycling at 45 and 65% peak oxygen consumption) during follicular and luteal phases. In both menstrual phases, an effect of exercise intensity was evident with glucose rates of appearance and disappearance and metabolic clearance rates: rest < 45% intensity < 65% intensity (P < 0.05). In addition, we observed no significant effect of menstrual phase on glucose rates of appearance and disappearance and metabolic clearance rate during rest or exercise at either intensity. These results are interpreted to mean that in women fed several hours before study 1) glucose flux is directly related to exercise intensity, 2) menstrual cycle phase does not alter glucose flux during rest and exercise, and 3) the subtle effects of endogenous ovarian hormones on glucose kinetics are subordinate to the much larger effects of exercise and recent carbohydrate nutrition.  相似文献   

20.
Four women were studied at 0400 h and 1600 h to determine if their hormonal and hemodynamic responses to exercise varied with the circadian cycle. Esophageal temperature was measured during rest and exercise (60% peak VO2; 30 min) in a warm room (Ta = 35 degrees C; PH2O = 1.7 kPa). Venous blood samples were drawn during rest and exercise and hemoglobin concentration (Hb), hematocrit (Hct), plasma osmolality (Posm), plasma protein concentration (Pp), colloid osmotic pressure (COP), plasma renin activity (PRA), cortisol, aldosterone, norepinephrine (NE) and epinephrine (E) were determined. Changes in plasma volume (PV) were estimated from changes in Hb and Hct. The relative hemoconcentration (-11.2%) was similar at 0400 h and 1600 h, but the absolute PV was smaller at 1600 h than at 0400 h (p = 0.03). The responses of Posm, Pp and COP to exercise were unaffected by time of day. Although PRA was not different at the two times of day, PRA was 244% greater during exercise at 1600 h, but only 103% greater during exercise at 0400 h. The normal circadian rhythms in plasma aldosterone (p = 0.043) and plasma cortisol (p = 0.004) were observed. Plasma aldosterone was 57% greater during exercise, while plasma cortisol did not change. The change in E and NE was greater at 0400 h, but this was due to the lower resting values of the catecholamines at 0400 h. These data indicate that time of day generally did not affect the hormonal or hemodynamic responses to exercise, with the exception that PRA was markedly higher during exercise at 1600 h compared to 0400 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号