首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.  相似文献   

2.
Kang J  Mizukami Y  Wang H  Fowke L  Dengler NG 《Planta》2007,226(5):1207-1218
Formation of leaf vascular pattern requires regulation of a number of cellular processes, including cell proliferation. To assess the role of cell proliferation during vein order formation, leaf development in genetic lines exhibiting aberrant cell proliferation patterns due to altered expression patterns of ANT and ICK1 genes was analyzed. Modification of cell proliferation patterns alters the number of higher order veins and the number of minor tertiary veins remodeled as intersecondary veins in Arabidopsis rosette leaves. Minor vein complexity, as indicated by branch point and freely ending veinlet number, is highly correlated with a decrease or increase in cell proliferation. Observations of procambial strand formation in modified cell proliferation pattern lines showed that vein pattern is specified early in leaf development and that formation of freely ending veinlets is temporally correlated with the expansion of ground meristem when cell proliferation is terminated prematurely. Taken together, our observations indicate that: (1) genes that modulate cell proliferation play a key role in regulating the meristematic competence of ground meristem cells to form procambium and vein pattern during leaf development, and (2) ANT is a crucial part of this regulation.  相似文献   

3.
The principles underlying the formation of leaf veins have long intrigued developmental biologists. In leaves, networks of vascular precursor procambial cells emerge from seemingly homogeneous subepidermal tissue through the selection of anatomically inconspicuous preprocambial cells. Understanding dynamics of procambium formation has been hampered by the difficulty of observing the process in vivo. Here we present a live-imaging technique that allows visual access to complex events occurring in developing leaves. We combined this method with stage-specific fluorescent markers in Arabidopsis (Arabidopsis thaliana) to visualize preprocambial strand formation and procambium differentiation during the undisturbed course of development and upon defined perturbations of vein ontogeny. Under all experimental conditions, we observed extension, termination and fusion of preprocambial strands and simultaneous initiation of procambium differentiation along entire individual veins. Our findings strongly suggest that progressiveness of preprocambial strand formation and simultaneity of procambium differentiation represent inherent properties of the mechanism underlying vein formation.  相似文献   

4.
The SCARFACE gene is required for cotyledon and leaf vein patterning   总被引:6,自引:0,他引:6  
Mechanisms controlling vein patterning are poorly understood. We describe a recessive Arabidopsis mutant, scarface (sfc), which maps to chromosome 5. sfc mutants have vein pattern defects in cotyledons, leaves, sepals and petals. In contrast to the wild type, in which these organs all have linear veins that are continuous with at least one other vein, in sfc mutants these organs' secondary and tertiary veins are largely replaced by small segments of discontinuous veins, which we call vascular islands. Patterning defects are manifest in cotyledon provascular tissue, suggesting that the patterning defect occurs early in organogenesis. sfc mutants have exaggerated responses to exogenous auxin. Analysis of monopteros (mp(T370)) sfc-1 double mutants suggested that SFC has partially overlapping functions with MP in patterning of both primary and secondary veins.  相似文献   

5.
6.
For the genetic analysis of molecular mechanisms underlying temporal and spatial regulation of vascular pattern formation, we isolated mutants of Arabidopsis thaliana that are impaired in vascular patterning. Microscopic examination of the cotyledonary venation of 3,400 M(3) lines led to the identification of 12 mutant lines. Genetic analysis of 8 of these mutant lines indicated that vein pattern formation in these lines resulted from monogenic recessive mutations in 7 different genes, designated VAN1 through VAN7. Mutations in VAN1 through VAN6 genes caused fragmentation (disconnection or partial loss) of lateral veins of the cotyledon and tertiary veins of the rosette leaf whereas they were less injurious to the formation of major veins. Detailed characterization of the van3 mutant using pAthb8::GUS and pTED3::GUS, as molecular markers for the early stage of vascular tissue formation showed that the provascular tissue of the cotyledonary lateral veins was differentiated in fragments during late embryogenesis. These phenotypes of the van mutants are discussed in relation to the auxin signal flow canalization hypothesis and the diffusion-reaction prepattern hypothesis, with the fragility of the continuity in the minor vein formation favoring the latter hypothesis.  相似文献   

7.
Responses of plant vascular systems to auxin transport inhibition.   总被引:28,自引:0,他引:28  
To assess the role of auxin flows in plant vascular patterning, the development of vascular systems under conditions of inhibited auxin transport was analyzed. In Arabidopsis, nearly identical responses evoked by three auxin transport inhibitor substances revealed an enormous plasticity of the vascular pattern and suggest an involvement of auxin flows in determining the sites of vascular differentiation and in promoting vascular tissue continuity. Organs formed under conditions of reduced auxin transport contained increased numbers of vascular strands and cells within those strands were improperly aligned. In leaves, vascular tissues became progressively confined towards the leaf margin as the concentration of auxin transport inhibitor was increased, suggesting that the leaf vascular system depends on inductive signals from the margin of the leaf. Staged application of auxin transport inhibitor demonstrated that primary, secondary and tertiary veins became unresponsive to further modulations of auxin transport at successive stages of early leaf development. Correlation of these stages to anatomical features in early leaf primordia indicated that the pattern of primary and secondary strands becomes fixed at the onset of lamina expansion. Similar alterations in the leaf vascular responses of alyssum, snapdragon and tobacco plants suggest common functions of auxin flows in vascular patterning in dicots, while two types of vascular pattern alterations in Arabidopsis auxin transport mutants suggest that at least two distinct primary defects can result in impaired auxin flow. We discuss these observations with regard to the relative contributions of auxin transport, auxin sensitivity and the cellular organisation of the developing organ on the vascular pattern.  相似文献   

8.
The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.  相似文献   

9.
Photosynthesis underpins the viability of most ecosystems, with C4 plants that exhibit ‘Kranz’ anatomy being the most efficient primary producers. Kranz anatomy is characterized by closely spaced veins that are encircled by two morphologically distinct photosynthetic cell types. Although Kranz anatomy evolved multiple times, the underlying genetic mechanisms remain largely elusive, with only the maize scarecrow gene so far implicated in Kranz patterning. To provide a broader insight into the regulation of Kranz differentiation, we performed a genome‐wide comparative analysis of developmental trajectories in Kranz (foliar leaf blade) and non‐Kranz (husk leaf sheath) leaves of the C4 plant maize. Using profile classification of gene expression in early leaf primordia, we identified cohorts of genes associated with procambium initiation and vascular patterning. In addition, we used supervised classification criteria inferred from anatomical and developmental analyses of five developmental stages to identify candidate regulators of cell‐type specification. Our analysis supports the suggestion that Kranz anatomy is patterned, at least in part, by a SCARECROW/SHORTROOT regulatory network, and suggests likely components of that network. Furthermore, the data imply a role for additional pathways in the development of Kranz leaves.  相似文献   

10.
Genetic regulation of vascular tissue patterning in Arabidopsis   总被引:5,自引:0,他引:5       下载免费PDF全文
Plants transport water and nutrients through a complex vascular network comprised of interconnected, specialized cell types organized in discrete bundles. To identify genetic determinants of vascular tissue patterning, we conducted a screen for mutants with altered vascular bundle organization in Arabidopsis cotyledons. Mutations in two genes, CVP1 and CVP2 (for cotyledon vascular pattern), specifically disrupt the normal pattern of vascular bundles in cotyledons, mature leaves, and inflorescence stems. The spatial distribution of the procambium, the precursor to mature vascular tissue, is altered in cvp1 and cvp2 embryos, suggesting that CVP1 and CVP2 act at a very early step in vascular patterning. Similarly, in developing stems of cvp1 and leaves of cvp2, the pattern of vascular differentiation is defective, but the maturation of individual vascular cells appears to be normal. There are no discernible alterations in cell morphology in cvp2 mutants. In contrast, cvp1 mutants are defective in directional orientation of the provascular strand, resulting in a failure to establish uniformly aligned vascular cells, and they also show a reduction in vascular cell elongation. Neither cvp1 nor cvp2 mutants displayed altered auxin perception, biosynthesis, or transport, suggesting that auxin metabolism is not generally affected in these mutants.  相似文献   

11.
12.
The development and activity of the procambium and cambium, which ensure vascular tissue formation, is critical for overall plant architecture and growth. However, little is known about the molecular factors affecting the activity of vascular meristems and vascular tissue formation. Here, we show that the His kinase CYTOKININ-INDEPENDENT1 (CKI1) and the cytokinin receptors ARABIOPSIS HISTIDINE KINASE2 (AHK2) and AHK3 are important regulators of vascular tissue development in Arabidopsis thaliana shoots. Genetic modifications of CKI1 activity in Arabidopsis cause dysfunction of the two-component signaling pathway and defects in procambial cell maintenance. CKI1 overexpression in protoplasts leads to cytokinin-independent activation of the two-component phosphorelay, and intracellular domains are responsible for the cytokinin-independent activity of CKI1. CKI1 expression is observed in vascular tissues of inflorescence stems, and CKI1 forms homodimers both in vitro and in planta. Loss-of-function ahk2 and ahk3 mutants and plants with reduced levels of endogenous cytokinins show defects in procambium proliferation and an absence of secondary growth. CKI1 overexpression partially rescues ahk2 ahk3 phenotypes in vascular tissue, while the negative mutation CKI1H405Q further accentuates mutant phenotypes. These results indicate that the cytokinin-independent activity of CKI1 and cytokinin-induced AHK2 and AHK3 are important for vascular bundle formation in Arabidopsis.  相似文献   

13.
Qi J  Qian Q  Bu Q  Li S  Chen Q  Sun J  Liang W  Zhou Y  Chu C  Li X  Ren F  Palme K  Zhao B  Chen J  Chen M  Li C 《Plant physiology》2008,147(4):1947-1959
The size and shape of the plant leaf is an important agronomic trait. To understand the molecular mechanism governing plant leaf shape, we characterized a classic rice (Oryza sativa) dwarf mutant named narrow leaf1 (nal1), which exhibits a characteristic phenotype of narrow leaves. In accordance with reduced leaf blade width, leaves of nal1 contain a decreased number of longitudinal veins. Anatomical investigations revealed that the culms of nal1 also show a defective vascular system, in which the number and distribution pattern of vascular bundles are altered. Map-based cloning and genetic complementation analyses demonstrated that Nal1 encodes a plant-specific protein with unknown biochemical function. We provide evidence showing that Nal1 is richly expressed in vascular tissues and that mutation of this gene leads to significantly reduced polar auxin transport capacity. These results indicate that Nal1 affects polar auxin transport as well as the vascular patterns of rice plants and plays an important role in the control of lateral leaf growth.  相似文献   

14.
As in most dicotyledonous plants, the leaves and cotyledons of Arabidopsis have a closed, reticulate venation pattern. This pattern is proposed to be generated through canalization of the hormone auxin. We have identified two genes, FORKED 1 (FKD1) and FORKED 2 (FKD2), that are necessary for the closed venation pattern: mutations in either gene result in an open venation pattern that lacks distal meeting. In fkd1 leaves and cotyledons, the defect is first evident in the provascular tissue, such that the distal end of the newly forming vein does not connect to the previously formed, more distal vein. Plants doubly mutant for both genes have widespread defects in leaf venation, suggesting that the genes function in an overlapping manner at the distal junctions, but act redundantly throughout leaf veins. Expression of an auxin responsive reporter gene is reduced in fkd1 leaves, suggesting that FKD1 is necessary for the auxin response that directs vascular tissue development. The reduction in reporter gene expression and the fkd1 phenotype are relieved in the presence of auxin transport inhibition. The restoration of vein junctions in situations where auxin concentrations are increased indicates that distal vein junctions are sites of low auxin concentration and are particularly sensitive to reduced FKD1 and FKD2 activity.  相似文献   

15.
The origin and early development of procambium and associated ground meristem of major and minor veins have been examined in the leaf blades of seven C4 grass species, representing different taxonomic groups and the three recognized biochemical C4 types (NAD-ME, PCK, and NADP-ME). Comparisons were made with the C3 species, Festuca arundinacea. In “double sheath” (XyMS+) species (Panicum effusum, Eleusine coracana, and Sporoboìus elongatus), the procambium of major veins gives rise to xylem, phloem, and a mestome sheath; associated ground meristem differentiates into PCA (“C4 mesophyll”) tissue and the PCR (“Kranz”) sheath. Development in the C3 species parallels this pattern, except that associated ground meristem differentiates into mesophyll and a parenchymatous bundle sheath. In contrast, major vein procambium of “single sheath” (XyMS–) species (Panicum bulbosum, Digitaria brownii, and Cymbopogon procerus) differentiates into xylem, phloem and a PCR sheath; associated ground meristem gives rise to PCA tissue. These observations of major vein development support W. V. Brown's hypothesis that the PCR sheaths of “double sheath” (XyMS+) C4 grasses are homologous with the parenchymatous bundle sheaths of C3 grasses, while in “single sheath” (XyMS–) C4 species they are homologous with the mestome sheath. Although there are some similarities in the development of the major and minor vascular bundle procambium in the C4 species examined, the ontogeny of the smaller minor veins is characterized by a precocious delineation of the PCR sheath layer that may even precede the appearance of the distinctive cytological features of ground meristem and procambium. This contracted development in minor veins appears to be related to their close spacing in mature leaves and to their comparatively late appearance during leaf ontogeny.  相似文献   

16.
Auxin is required for leaf vein pattern in Arabidopsis   总被引:11,自引:0,他引:11       下载免费PDF全文
Sieburth LE 《Plant physiology》1999,121(4):1179-1190
To investigate possible roles of polar auxin transport in vein patterning, cotyledon and leaf vein patterns were compared for plants grown in medium containing polar auxin transport inhibitors (N-1-naphthylphthalamic acid, 9-hydroxyfluorene-9-carboxylic acid, and 2,3,5-triiodobenzoic acid) and in medium containing a less well-characterized inhibitor of auxin-mediated processes, 2-(p-chlorophynoxy)-2-methylpropionic acid. Cotyledon vein pattern was not affected by any inhibitor treatments, although vein morphology was altered. In contrast, leaf vein pattern was affected by inhibitor treatments. Growth in polar auxin transport inhibitors resulted in leaves that lacked vascular continuity through the petiole and had broad, loosely organized midveins, an increased number of secondary veins, and a dense band of misshapen tracheary elements adjacent to the leaf margin. Analysis of leaf vein pattern developmental time courses suggested that the primary vein did not develop in polar auxin transport inhibitor-grown plants, and that the broad midvein observed in these seedlings resulted from the coalescence of proximal regions of secondary veins. Possible models for leaf vein patterning that could account for these observations are discussed.  相似文献   

17.
The dominant Knotted-1 mutations in maize alter development of the leaf blade. Sporadic patches of localized growth, or knots, and fringes of ectopic ligule occur along lateral veins of mutant leaf blades. In addition, bundle sheaths do not completely encircle lateral veins on mutant leaf blades. We have compared mutant leaf blades with wild-type leaves to determine the precise nature of the perturbed regions. Our analysis includes characterization of epidermal cell shapes, localization of photosynthetic proteins and histology of the leaf. We show that mutant leaf blades are a mosaic of leaf organ components. Affected regions of mutant leaf blades resemble either sheath or auricle tissue in both external and internal features. This conversion of blade cells represents an acropetal shift of more basal parts of the leaf blade region and correlates with previously identified ectopic expression of the Knotted-1 protein in the leaf blade. We propose that inappropriate expression of Kn1 interferes with the process of establishment of cell identities, resulting in early termination of the normal blade development program or precocious expression of the sheath and auricle development programs. © 1994 Wiley-Liss, Inc.  相似文献   

18.

Background and Aims

Leaf venation in many C4 species is characterized by high vein density, essential in facilitating rapid intercellular diffusion of C4 photosynthetic metabolites between different tissues (mesophyll, bundle sheath). Greater vein density has been hypothesized to be an early step in C4 photosynthesis evolution. Development of C4 vein patterning is thought to occur from either accelerated or prolonged procambium formation, relative to ground tissue development.

Methods

Cleared and sectioned tissues of phylogenetically basal C3 Flaveria robusta and more derived C4 Flaveria bidentis were compared for vein pattern in mature leaves and vein pattern formation in developing leaves.

Key Results

In mature leaves, major vein density did not differ between C3 and C4 Flaveria species, whereas minor veins were denser in C4 species than in C3 species. The developmental study showed that both major and minor vein patterning in leaves of C3 and C4 species were initiated at comparable stages (based on leaf length). An additional vein order in the C4 species was observed during initiation of the higher order minor veins compared with the C3 species. In the two species, expansion of bundle sheath and mesophyll cells occurred after vein pattern was complete and xylem differentiation was continuous in minor veins. In addition, mesophyll cells ceased dividing sooner and enlarged less in C4 species than in C3 species.

Conclusions

Leaf vein pattern characteristic to C4 Flaveria was achieved primarily through accelerated and earlier offset of higher order vein formation, rather than other modifications in the timing of vein pattern formation, as compared with C3 species. Earlier cessation of mesophyll cell division and reduced expansion also contributed to greater vein density in the C4 species. The relatively late expansion of bundle sheath and mesophyll cells shows that vein patterning precedes ground tissue development in C4 species.Key words: Bundle sheath, C4 photosynthesis evolution, Flaveria, heterochrony, leaf development, mesophyll, vein density, vein pattern formation  相似文献   

19.
20.
In Arabidopsis stems, the vascular bundles in the stele are arranged in a ring-like pattern and the vascular tissues in each bundle are organized in a collateral pattern. We have shown previously that the semidominant amphivasal vascular bundle 1 (avb1) mutation transforms the collateral vascular bundles into amphivasal bundles and disrupts the ring-like arrangement of vascular bundles in the stele. In this study, we show that the avb1 mutation occurred in the putative microRNA 165 target sequence in the IFL1/REV gene and caused an amino acid substitution in the putative sterol/lipid-binding START domain. We present direct evidence that the wild-type IFL1/REV mRNA was cleaved within the microRNA 165 target sequence and the avb1 mutation resulted in an inhibition of cleavage and a higher level accumulation of full-length mRNA, suggesting a role of microRNA 165 in the regulation of IFL1/REV gene expression. In addition to an alteration in vascular patterning, the avb1 mutation also caused dramatic changes in fiber cell wall thickening and organ polarity, including aberrant formation and proliferation of cauline leaves and branches, production of trumpet-shaped leaves with reversed adaxial-abaxial identity, ectopic growth of carpel-like structures on the outer surface of carpels, and fasciation of inflorescence. Ectopic overexpression of the avb1 mutant cDNA not only phenocopied most of the avb1 mutant phenotypes but also led to additional novel phenotypes such as formation of leaves with extremely narrow blades and ectopic production of branches in the axil of siliques. Taken together, these results suggest that the avb1 gain-of-function mutation of the IFL1/REV gene alters the positional information that determines vascular patterning and organ polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号