首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uninucleate microspores of Triticum aestivum cv. Pavon can be induced in vitro to alter their development to produce embryoids rather than pollen. Microspores expressed their embryogenic capacity through one of two division pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen grain. Here the generative cell detached from the intine, migrated to a central position in the pollen grain, and underwent a second haploid mitosis as the vegetative cell divided to give rise to the embryoid. In the second pathway, the first division was symmetric and both nuclei divided repeatedly to form the embryoid. This comparative analysis of normal pollen ontogeny and induced embryogenesis provided no evidence for the existence of predetermined embryogenic microspores in vitro or in vivo. Instead, microspores are induced at the time of culture, and embryogenesis involves continued metabolic activity associated with the gradual cessation of the gametophytic pathway and a redifferentiation into the sporophytic pathway. In conjunction with a previous study, it appears that embryogenic induction of wheat microspores involves switching off gametophytic genes and derepressing sporophytic genes.  相似文献   

2.
The present paper deals with the experimental researches on the gametophytic and sporophytic pathways of pollen development in Oryza sativa L. Subsp. Keng, Cultivar Jinghong No. 2. Three methods of culture were used: (1) The lemma, palea and pistil of excised spikelets were removed and the pedicel was inserted vertically into the medium with the intact stamens standing freely above the medium surface (vertical culture). (2) The spikelets were manipulated similarly but placed horizontally on the medium so that their anthers were directly contacted with the latter ('horizontal culture'). (3) The anthers were excised and inoculated separately (anther culture). In all cases the pollen stage at inoculation was in late uninucleate. N6 basic medium supplemented with or without MCPA (2 ppm) was used. After inoculation the samples were collected periodically for cytological observation. In all cases the pollen passed a short stage of gametophytic development, forming a vegetative and a generative cell, then various pathways commenced in different cultures. In vertical culture, most of the pollen went on .along. the gametophytic pathway up to normal 3-celled stage, but some showed anomalous divisions of vegetative or/and generative nuclei, indicating an initiation of sporophytic development. In horizontal culture, the sporophytic deve]opment went on further, producing some calluses, though the main pollen population remained as gametophyte. In anther culture, the gametophytic pathway to a mature 3-celled pollen was blocked, the unique pathway being sporophytic. In rice, the pollen developed along sporophytic path- way mainly via A route. These comparative investigations indicate that there are two chief factors concerning the switch of pollen development from one pathway to another: first, to be freed from the in vivo restrictions, which, as suggested by Sunderland and as sup- ported by the results of vertical culture in our experiments, is sufficient to trigger the first sporophytic division, and second, 'direct contact with the medium, which is necessary to support the successive growth of multicellular grains and calluses. As to the exogenous hormone, rather than functioning as an agent triggering sporophytic development, it plays an important role in increasing eventual induction frequency, growth rates and differentiating ability of calluses.  相似文献   

3.
In an attempt to discover the biological basis of microspore derived embryogenesis, the effect of the antimicrotubule agent colchicine on anther and free microspore embryogenesis was investigated. The microtubule inhibitor colchicine promoted embryogenesis from cultured anthers, both with regard to the number of anthers responding and the number of embryos being produced per anther. A similar promotional response was also observed with cultured microspores. Although the parameters for cultured anthers and free microspores differed, administration of the drug for a short period immediately prior to pollen mitosis I seems to exert the maximum promotional effect. Of the five cultivars of Brassica napus studied, all responded to colchicine treatment. However, the drug did release more embryogenic potential in poor-responding varieties (i.e. Lirawell and Optima) than in the highest responding variety (Topas). Colchicine also resulted in increased embryogenic response in microspores cultured at lower temperatures.These results are considered in terms of models proposed to explain the switch in microspore development from a gametophytic to a sporophytic pathway. The use ofcolchicine as agent to promote embryogenesis in previously recalcitrant species other than Brassica is also discussed.  相似文献   

4.
Specific stress treatments (sucrose starvation, alone or combined with a heat shock) applied to isolated tobacco (Nicotiana tabacum L.) microspores irreversibly blocked normal gametophytic development and induced the formation of embryogenic cells, which developed subsequently into pollen-derived embryos by culture at 25°C in a sugar-containing medium. A cold shock at 4°C did not inhibit microspore maturation in vitro and did not induce cell division activity, even when combined with a starvation treatment. In the absence of sucrose, microspores isolated in the G1 phase of the cell cycle replicated their DNA and accumulated in G2. Late microspores underwent miotosis during the first day of culture which resulted in a mixed population of bicellular pollen grains and uninucleate microspores, both embryogenic. After the inductive stress treatments the origin of the first multicellular structures, formed in the sugar-containing medium, could be traced to divisions of the microspore cell or divisions of the vegetative cell of bicellular pollen, indicating that the symmetry of microspore mitosis in vitro is not important for embryogenic induction. These results represent a step forward towards a unified model of induction of embryogenesis from microspores/pollen which, within a relatively wide developmental window, are competent to deviate from normal gametophytic development and initiate the alternative sporophytic programme, in response to specific stress signals.Abbreviation DAPI 4,6-diamidino-2-phenylindole We acknowledge the help of Monica Boscaiu and Zarko Hrzenjak with the artwork, and Michaela Braun-Mayer for growing the tobacco plants. This project was financed by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung, grant S6003-BIO.  相似文献   

5.
环境因子对蕨类植物孢子萌发的影响   总被引:1,自引:0,他引:1  
张正修  戴绍军 《生态学报》2010,30(7):1882-1893
蕨类植物通过孢子萌发形成独立生活的配子体,配子体能够形成精子器和颈卵器,进而通过受精作用形成新的孢子体。孢子萌发是蕨类植物生活史过程中配子体世代向孢子体世代转变的关键步骤。同时,此过程不仅受到多种环境因子的影响,也是研究细胞核极性移动、细胞不对称分裂、假根极性生长等独特的细胞学事件的良好模型。迄今为止,人们已经研究发现多种环境因子对约200余种蕨类植物孢子萌发有影响。总结了环境因子对蕨类植物孢子萌发影响的规律如下:(1)孢子萌发除了受到光照强度影响外,主要受光质的影响,光质的影响主要表现为4种方式:①孢子萌发受红光刺激与远红光抑制像开关一样调控;②孢子萌发不受远红光抑制;③孢子萌发受蓝光抑制;④孢子只能在黑暗条件下萌发。(2)重力作用会影响孢子细胞核移动,进而影响孢子细胞发育的极性。(3)赤霉素(GA)能增加孢子萌发率或帮助孢子打破休眠。成精子囊素与GA作用相似,启动或促进孢子萌发。而脱落酸(ABA)、茉莉酸(JA)和乙烯等其它激素对孢子萌发的影响相对较小。(4)不同植物孢子有着各自最适的萌发培养基条件,如不同种类孢子对MS培养基中无机盐含量、蔗糖含量、pH值的要求不同。孢子外被中的Ca2+、Mn2+和Mg2+,培养基中的Cd2+和La3+,以及孢子接种密度、萌发空间CO2含量也会对孢子萌发造成影响。(5)多数蕨类植物孢子在15-30℃可以萌发,最适萌发温度为25℃。(6)4℃和液氮储藏可以延长孢子寿命并保持较高萌发率。  相似文献   

6.
7.
Summary Temperature controls the developmental fate of isolated Brassica napus microspores in vitro. Culture at 32.5°C leads to sporophytic development and the formation of embryos. Here we show that culture at 17.5°C leads to gametophytic development, and the formation of pollen-like structures at high frequencies (up to 80% after 7 days in culture). Early stages of both developmental pathways are observed in culture at 25.0°C, and embryos are produced at low frequencies (0.7%) at that temperature. Culturing B. napus microspores at 32.5°C versus 17.5°C brings the switch from gametophytic to sporophytic development under simple experimental control and provides a convenient tool for investigating the cellular and molecular mechanisms controlling this developmental switch.  相似文献   

8.
For isolating young pollen protoplasts in Nicotiana tabacum. The authors had established two efficient enzymatic methods via anther preculture or pollen starvation pretreatment. Procedure of the first method included the following steps: 1. Cold pretreatment of flower buds with pollen at late unicellular to early bicellular stage; 2. Anther floating culture for pollen shedding into the culture medium followed by dehiscence of exine; 3. Enzymatic maceration of exine-dehisced pollen resulting in degradation of intine and release of pollen protoplasts in large quantity. Procedure of the second method involved the following steps: 1. Culture of pollen at middle bicellular in Kyo and Harada' B medium for starvation: 2. Enzymatic maceration of starvated pollen resulting in release of pollen protoplasts and subprotoplasts. Factors affecting the results of both methods as well as early in vitro developmental events of young pollen protoplasts were studied. The protoplasts could be induced either to trigger the first sporophytic division or to continue the gametophytic pathway leading germinatation of pollen tubes !ndicating their potentiality of inducing both sporophytic and gametophytic development of pathway. In rare instance a quite interesting phenomenon was observed that a pollen protoplast first divided into two daughter cells and one of which then germinated a pollen tube. It may insinuate that such pollen protoplasts initially induced a sporophytic pathway could reverse induce a gametophytic pathway.  相似文献   

9.
The switch of the gametophytic developmental program toward pollen embryogenesis to form a haploid plant represents an important alternative for plant breeding. In the present study, the switch of the gametophytic developmental program toward a sporophytic pathway, "embryogenesis," has been studied in three different plant species, Brassica, tobacco, and pepper. The switch has been induced by stress (heat shock) at the very responsive stage of the microspore, which is the vacuolate period. As a result, the cell nucleus undergoes striking structural changes with regard to late gametophytic development, including alterations of biosynthetic activities and proliferative activity. An enrichment in HSP70 heat-shock protein and in the presence of Ntf6-MAP kinase was observed after inductive treatment in the nuclei during early embryogenesis. This apparently reflected the possible roles of these proteins, specifically the protective role of HSP70 for the nuclear machinery, and signal transduction of Ntf6-MAPK for the entry of cells into proliferation. Importantly, the observed nuclear changes were similar in the three species investigated and represented convenient markers for early monitoring of embryogenesis and selection purposes for obtaining double-haploid plants in plant breeding.  相似文献   

10.
The regulation of developmental pathways in cultured microspores of tobacco (Nicotiana tabacum L) and snapdragon (Antirrhinum majus L) by medium pH is described for the first time. Unicellular tobacco and snapdragon microspores developed into normal, fertile pollen when cultured in media T1 and AT3 at pH 7.0 and 25°C for 6 and 8 days, respectively. First, pollen mitosis was asymmetric and mature pollen grains were filled with starch granules and germinated upon transfer to a germination medium. However, when tobacco and snapdragon microspores were cultured in media T1 and AT3, respectively, at pH 8.0–8.5 for 4–6 days at 25 °C, the frequency of symmetric division increased significantly with the formation two nuclei of equal size, and the gametophytic pathway was blocked, as seen by the lack of starch accumulation and the inhibition of pollen germination. The transfer of these microspores to embryogenesis medium AT3 at pH 6.5 resulted in the formation of multicellular structures in both species and, in tobacco, in the formation of embryos and plants. In order to understand the possible mechanisms of the action of high pH, sucrose metabolism was analysed in isolated microspores of tobacco cultured at various pH values. Invertase (EC 3.2.1.26) activity in microspores was maximal at pH 5.0 and strongly decreased at higher pH, leading to a slow-down of sucrose cleavage. At the same time the incorporation of 14C-labelled sucrose from the medium into microspores was drastically reduced at high pH. These data suggest that isolated microspores are not able to metabolise carbohydrates at high pH and thus undergo starvation stress, which was shown earlier to block the gametophytic pathway and trigger sporophytic development.  相似文献   

11.
The population dynamics of the carrageenophyte Sarcothalia crispatais described from subtidal beds at two localities in south-central Chile. Seasonal fluctuations in total density and biomass were not evident. Frondswere identified to phase by the presence of reproductive structures and theresorcinol reaction. The monthly changes in abundance of each kind offrond were determined. Permanent gametophytic or sporophyticdominance was not evident: the more exposed site showed a seasonal shiftfrom sporophytic dominance in summer to gametophytic dominance inwinter, whereas the more protected site showed an interannual shift fromgametophytic to sporophytic dominance. The differences between localitiesand years suggest a very local population dynamics with large contributionof self-seeding to the maintenance of the S. crispata beds.  相似文献   

12.
Abstract

In recent years a number of experimental findings have indicated that in higher plants the gametophytic phase is able to express its own genetic information, a large part of which it shares with the sporophytic generation. Quantitative estimates of haploid and haplodiploid gene expression have been obtained by mRNA and isozyme analysis in several plant species: 60-70% of the genes are expressed in both pollen and plant, about 10% are pollen-specific, and 20% represent the sporophytic domain. Moreover, it has been demonstrated that stage-specific genes are expressed in the gametophytic generation: at least two sets of genes are activated during pollen development, others are expressed only in the postshedding period, during germination and tube growth. Studies have been made to ascertain the role played by gametophyte-expressed genes in pollen development; the in vivo and in vitro pollen tube growth rate has been revealed to be controlled by the gametophyte genome itself. Differential effects of specific chromosomal deficiencies on the development of maize pollen grains have indicated that components of normal microspore development are controlled by genes located in specific parts of the genome. For single gene analysis, gene transfer can be used; on the contrary, for traits with a multifactorial genetic control, direct proof of gene expression both in the gametophytic and the sporophytic generation can be obtained when selection is applied to the pollen population of a hybrid plant, and response to selection is observed in the resulting sporophytic progeny. Response to selection, applied at different stages of the gametophytic phase, has been described in the sporophytic progeny and this with regard to many adaptive traits; thus the phenomenon can have an important bearing on the genetic structure of natural populations and on higher plant evolution, it can also be used as a breeding tool to increase the efficiency of conventional selection methods.  相似文献   

13.
Summary In the past, in vitro cultures of excised anthers and isolated pollen have been used to study normal male sexual development (gametophytic development) and, conversely, to produce and study haploid plant formation (sporophytic development). For years both branches have existed side by side, without much interaction. Today, a synthesis of the two branches is possible as well as necessary. Recent advances in the technique of isolated pollen culture in the tobacco plant model (Nicotiana tabacum L.) enable the researcher to strictly control pollen development in both the gametophytic and sporophytic direction. The nutritional status of the immature pollen grain at a particular stage of development provides the trigger for its development into one of the two phases found in the alternation of generations undergone by higher plants. In particular, a hunger signal is responsible for the derepression of cell division activity and the start of embryogenesis. Pollen starvation can occur in isolated pollen cultures in sucrose-free media, in excised anthers and flowers, and, under specific growth conditions, during pollen development in vivo.  相似文献   

14.
Isolated tobacco (Nicotiana tabacum L.) microspores maturing in vitro can be induced to undergo symmetrical divisions, instead of the normal asymmetrical first pollen mitosis, by addition of anther extracts to the culture medium. The two daughter cells in symmetrically divided pollen resemble vegetative pollen cells in cytological characteristics, nuclear size and chromatin condensation, are separated by a cell wall and remain viable during in vitro maturation. After transfer to a germination medium, only one of the two vegetativelike cells forms a pollen tube in vitro. Therefore, apparently normal gametophytic development can be maintained after symmetrical microspore division. These results are discussed in relation to current models for induction of microspore embryogenesis.  相似文献   

15.
Summary The cauliflower mosaic virus 35S (35S-CaMV) promoter, which is generally used as a constitutive promoter in plants, is known to be silent during microspore and pollen development. Here we analyzed whether the 35S-CaMV promoter fused to thegus (-glucuronidase) gene can be used as a marker for early sporophytic development in embryogenic microspore cultures of tobacco andBrassica napus. In microspore culture ofB. napus, the 35S-CaMV promoter remained off from the start of embryogenic culture up to the mid-cotyledonary embryo stage. 35S-CaMV promoter activity was only present in those microspores that initiated sporophytic development, but failed to enter embryogenic development. Similar results were also obtained with shed-microspore cultures of tobacco, in which rapid, direct embryogenesis takes place. In isolated-microspore cultures, in which embryogenesis is delayed, an intermitting period of sporophytic development was observed, characterized by extensive 35S-CaMV promoter activity. Therefore, the 35S-CaMV promoter discriminates between two classes of sporophytic development: it is activated in microspores which change fate from gametophytic into (temporarily) nonembryogenic sporophytic development, whereas the promoter is silent in sporophytic microspores that enter embryogenic development directly. This mirrors our observation that the 35S-CaMV promoter is also silent in young zygotic embryos.  相似文献   

16.
Differentiation of generative and vegetative cells in angiosperm pollen   总被引:5,自引:0,他引:5  
 Cellular differentiation of a generative and a vegetative cell is an important event during microspore and pollen development and is requisite for double fertilization in angiosperms. The generative cell produces two sperm cells, or male gametes, whereas the vegetative cell produces an elongated pollen tube, a gametophytic cell, to deliver the male gametes to the embryo sac. For typical differentiation of the gametic and gametophytic cells, cell polarity, including nuclear positioning, must be established prior to microspore mitosis and be maintained during mitosis. Microtubules are closely involved in the process of asymmetric cell division. On the other hand, alteration of the chromatin composition seems to be responsible for the differential gene expression between the generative and vegetative cells. Cytoplasmic regulatory molecules, which affect chromatin configuration, are postulated to be unequally distributed to the two cells at the asymmetric cell division. Thus, typical differentiation of the cells is accomplished by a cellular mechanism and a molecular mechanism, which might be independent of each other. These results are discussed in relation to one model that accounts for the different fates of generative and vegetative cells during sexual plant reproduction. Received: 3 September 1996 / Revision accepted: 23 September 1996  相似文献   

17.
双受精是被子植物特有的生殖方式,精细胞只有通过花粉管穿过花柱才能到达子房、胚珠受精。花粉管在母本组织中的生长和引导包括孢子体控制(sporophytic control)和配子体控制(gametophytic control)两个连续的过程,现已克隆出不同阶段花粉管生长和引导的基因,通过分析其表达调控揭示出花粉管生长和引导的分子机制。该文就近年来国内外有关花粉管生长和极性引导的调控机制研究进展进行综述,并对禾本科(Poaceae)和十字花科(Brassicaceae)植物花粉管引导的异同点进行了比较分析。  相似文献   

18.
Summary Gametophytes of Pteridium aquilinum fed for six days with 50 and 75 p.p.m. thiouracil ceased to produce archegonia, but archegonia already initiated completed their development. Eggs produced in the presence of 50 p.p.m. thiouracil were viable, but embryogenesis was retarded. Gametophytes fed with 75 p.p.m. thiouracil mostly remained barren after insemination, the eggs being inviable, but others produced outgrowths from the archegoniate region which were either gametophytic, or sporophytic with a tendency to revert morphologically and functionally to gametophytic tissue.Thiouracil administered after fertilization either prevented embryogenesis, or retarded it, the sporophytes then being deformed and often showing a tendency to produce gametophytic tissue. The embryo became less sensitive to short periods of thiouracil as it developed, possibly because of the appearance of relatively quiescent regions, serving as reservoirs of unaffected cells.The results are held to support the view that the genes responsible for sporophytic growth become activated during oogenesis, and that the cytoplasm of the mature egg already contains the information leading to this kind of growth.  相似文献   

19.
In order to assess the efficiency of male gametophytic selection (MGS) for crop improvement, pollen selection for tolerance to herbicide was applied in maize. The experiment was designed to test the parallel reactivity to Alachlor of pollen and plants grown in controlled conditions or in the field, the response to pollen selection in the sporophytic progeny, the response to a second cycle of MGS, and the transmission of the selected trait to the following generations. The results demonstrated that pollen assay can be used to predict Alachlor tolerance under field conditions and to monitor the response to selection. A positive response to selection applied to pollen in the sporophytic progeny was obtained in diverse genetic backgrounds, indicating that the technique can be generally included in standard breeding programs; the analysis of the data produced in a second selection cycle indicated that the selected trait is maintained in the next generation.  相似文献   

20.
Summary Male gametophytic selection can play a special role in the evolution of higher plant populations. The main assumption — gametophytic-sporophytic gene expression of a large portion of a plant's genes — has been proven by a number of studies. Population analyses have revealed a large amount of variability for male gametophytic fitness. However, the data available do not prove that at least a portion of this variability is due to postmeiotic gene expression. This paper reports the analysis of a synthetic population of maize based on a gametophytic selection experiment, carried out according to a recurrent scheme. After two cycles of selection, the response was evaluated for gametophytic and sporophytic traits. A parameter representing pollen viability and time to germination, although showing a large amount of genetic variability, was not affected by gametophytic selection, indicating that this variability is largely sporophytically controlled. Pollen tube growth rate was significantly affected by gametophytic selection: 21.6% of the genetical variability was released by selection. Correlated response for sporophytic traits was observed for mean kernel weight: 15.67% of the variability was released. The results are a direct demonstration that pollen competitive ability due to pollen tube growth rate and kernel development are controlled, to a considerable extent, by genes expressed in both tissues. They also indicate that gametophytic selection in higher plants can produce a higher evolution rate than sporophytic selection; it can thus serve to regulate the amount of genetic variability in the populations by removing a large amount of the genetic load produced by recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号