首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ompF gene codes for a major outer membrane protein whose expression is positively regulated by the ompR and envZ genes. Two sets of promoter deletions, upstream deletions and downstream deletions, were generated in vitro, and the promoter function was studied by connecting them with the tet genes. One of the hybrid genes thus constructed had a functioning ompF-tet hybrid promoter. The 107 base-pair fragment was found to be functioning as the ompF promoter, 90 nucleotides upstream and 17 nucleotides downstream of the mRNA start site that was also determined in this study. The start site was preceded by a convenient Pribnow box. Although the sequence at the -35 region had a low degree of homology to the consensus sequence, analyses of the hybrid promoter suggested that this region is involved in the promoter function in relation to the Pribnow box. They also indicated that the domain responsible for regulation by the ompR gene is located within the -35 region and its upstream region.  相似文献   

2.
3.
4.
5.
6.
7.
The OmpR protein is a positive regulator involved in osmoregulatory expression of the ompF and ompC genes, which respectively code for major outer membrane proteins OmpF and OmpC of Escherichia coli. The OmpR protein has been purified to homogeneity from an overproducing strain harboring an ompR gene-carrying plasmid. Throughout the purification the OmpR protein behaved as a single entity. The molecular weight determined on sodium dodecyl sulfate-polyacrylamide gel, the total amino acid composition, and the NH2-terminal amino acid sequence of the purified protein were essentially the same as those deduced from the nucleotide sequence of the ompR gene. Molecular weight determination and cross-linking study on the native protein revealed that the purified protein exists as a monomer. The purified OmpR protein was specifically bound to the promoter regions of the ompC and ompF genes. Experiments with a series of upstream deletions of the ompC and ompF promoters revealed that the region upstream from the -35 region was indispensable for OmpR binding to both the ompC and the ompF promoters. Although it has been proposed that depending on the medium osmolarity the OmpR protein may exist in two alternative structures, which respectively regulate functioning of the ompC and the ompF promoters, the purified OmpR protein appeared to be homogeneous and interacted with both promoters to the same extent.  相似文献   

8.
The OmpR protein is a positive regulator involved in osmoregulatory expression of the ompC and ompF genes that specify the major outer membrane proteins OmpC and OmpF, respectively. We purified the OmpR protein not only from wild-type cells but also from two ompR mutants (ompR2 and ompR3) exhibiting quite different phenotypes as to osmoregulation of the ompC and ompF genes. The OmpR2 protein has an amino acid conversion in the C-terminal portion of the OmpR polypeptide, whereas the OmpR3 protein has one in the N-terminal portion. Comparative studies on these purified OmpR proteins were carried out in terms of their interaction with the ompC and ompF promoters. The nucleotide sequences involved in OmpR-binding were determined in individual promoter regions by deoxyribonuclease I footprinting. The OmpR3 protein as well as the wild-type OmpR protein appeared to bind, to similar extents, to both the ompC and ompF promoters. In contrast, the OmpR2 protein bound preferentially to the ompF promoter and failed to protect the ompC promoter against DNAse I digestion. These results support the view that the C-terminal portion of the OmpR protein is responsible for the binding of the OmpR protein to the ompC and ompF promoter DNAs. Based on these results, the structure and function of the OmpR protein are discussed in relation to the mechanism of osmoregulation.  相似文献   

9.
10.
The roles of the first base of the Pribnow box in positive regulation of the ompC and ompF genes were studied. G- and A-to-T substitutions of the first base of the ompC and ompF Pribnow boxes, respectively, resulted in a high-level functioning of the promoters in the ompR background. The level was further enhanced significantly in the ompR+ background. The effects of other substitutions were also studied. Based on these observations, the roles of the Pribnow box in the positive regulation are discussed.  相似文献   

11.
12.
The integrase (IN) protein of human immunodeficiency virus type 1 (HIV-1) catalyzes site-specific cleavage of 2 bases from the viral long terminal repeat (LTR) sequence yet it binds DNA with little DNA sequence specificity. We have previously demonstrated that the C-terminal half of IN (amino acids 154-288) possesses a DNA binding domain. In order to further characterize this region, a series of clones expressing truncated forms of IN as N-terminal fusion proteins in E.coli were constructed and analyzed by Southwestern blotting. Proteins containing amino acids 1-263, 1-248 and 170-288 retained the ability to bind DNA, whereas a protein containing amino acids 1-180 showed no detectable DNA binding. This defines a DNA binding domain contained within amino acids 180-248. This region contains an arrangement of 9 lysine and arginine residues each separated by 2-4 amino acids (KxxxKxxxKxxxxRxxxRxxRxxxxKxxxKxxxK), spanning amino acids 211-244, which is conserved in all HIV-1 isolates. A clone expressing full-length IN with a C-terminal fusion of 16 amino acids was able to bind DNA comparably to a cloned protein with a free C-terminus, and an IN-specific monoclonal antibody which recognizes an epitope contained within amino acids 264-279 was unable to block DNA binding, supporting the evidence that a region necessary for binding lies upstream of amino acid 264.  相似文献   

13.
14.
15.
16.
17.
The catalytic alpha subunit of casein kinase II contains the 11 conserved domains characteristic of all protein kinases. Domain II and VII are involved in nucleotide binding and phosphotransfer. Two residues of the alpha subunit, Val-66 (in domain II) and Trp-176 (in domain VII), were changed to Ala-66 and Phe-176, the residues present in more than 95% of the identified protein kinase sequences. These changes altered the selectivity of the alpha subunit for ATP and GTP. The Ala-66 mutant showed an increase in the Km value for GTP from 45 to 71 microM, while the Km value for ATP decreased from 13 to 9 microM. The Km value for ATP with the Phe-176 mutant showed a decrease from 13 to 7 microM. A double mutant of Ala-66/Phe-176 showed the combined effects, with a Km of 6 microM for ATP and 70 microM for GTP. Alteration of Trp-176 to Lys-176, an amino acid which is not present in the corresponding position of any known protein kinase, resulted in a lack of phosphotransferase activity. The mutations, Val-66 to Ala-66 and Trp-176 to Phe-176, also altered the interaction of the alpha subunit with the regulatory beta subunit. In contrast to the wild-type alpha subunit, which was stimulated 4-fold by addition of the beta subunit, the Ala-66 and Ala-66/Phe-176 mutants were not stimulated by the beta subunit, while the Phe-176 mutant was stimulated only 2.5-fold. All of the reconstituted holoenzymes were similar in molecular weight to the native holoenzyme. The stimulation of the phosphotransferase activity toward beta-casein B by spermine and polylysine, which is mediated by the beta subunit, was similar for holoenzymes reconstituted with either wild-type or mutant alpha subunits. Therefore, binding of the beta subunit appears to alter the active site of the alpha subunit directly or indirectly by inducing a conformational change. Ala-66 and Phe-176 mutations appear to change the structure of the alpha subunit sufficiently so that interaction of the subunits is altered and the stimulatory effect of the beta subunit is reduced or eliminated.  相似文献   

18.
19.
The nucleotide sequence of the promoter region for the rrnB gene of E. coli had been determined by the Maxam-Gilbert technique. The 700 bp long sequence had been compared with the published sequences of four other rRNA promoter regions. The rrnB sequence was found to be homologous with the rrnA promoter sequence till the 370th base upstream from the coding region of mature 16S rRNA. The significance of this homology is discussed and a tentative model is proposed to account for the unusual properties of the rRNA promoters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号