首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

2.
1. Uronic acid dehydrogenase was purified to homogeneity. After a 338-fold purification a yield of 16% was achieved with a specific activity of 81 mumol NADH formed min-1 mg protein-1. 2. The purity of the enzyme was controlled by disc electrophoresis, sodium dodecylsulfate electrophoresis and ultracentrifugation. 3. A molecular weight of 60 000 was determined by gel chromatography and by ultracentrifugation. 4. The native enzyme is composed of two subunits, their molecular weight being 30 000 as estimated by sodium dodecylsulfate electrophoresis. The subunits as such are inactive. 5. The absorption spectrum with a maximum at 278 nm shows no evidence for a prosthetic group. 6. For catalytic activity no SH groups and no metals seem to be necessary. 7. The Michaelis constants determined with the pure enzyme are for glucuronic acid Km = 0.37 mM, galacturonic acid Km = 54 muM and NAD+ (with glucuronic acid) Km = 80 muM. 8. A weak reverse reaction could be observed with glucaric acid lactones at acidic pH. 9. NADH is competitive with NAD+. The inhibitor constant is Ki = 60 muM. 10. The NAD+ binding site seems to be of lower specificity than the uronic acid binding site.  相似文献   

3.
Two isozymes of horse liver aldehyde dehydrogenase (aldehyde, NAD oxidoreductase (EC 1.2.1.3)), F1 and F2, have been purified to homogeneity using salt fractionation followed by ion exchange and gel filtration chromatography. The specific activities of the two isozymes in a pH 9.0 system with propionaldehyde as substrate were approximately 0.35 and 1.0 mumol of NADH/min/mg of protein for the F1 and F2 isozymes, respectively. The multiporosity polyacrylamide gel electrophoresis molecular weights of the F1 and F2 isozymes were approximately 230,000 and 240,000 respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave subunit molecular weight estimates of 52,000 and 53,000 for the F1 and F2 isozymes, respectively. The amino acid compositions of the two isozymes were found to be similar; the ionizable amino acid contents being consistent with the electrophoretic and chromatographic behavior of the two isozymes. Both isozymes exhibited a broad aldehyde specificity, oxidizing a wide variety of aliphatic and aromatic aldehydes and utilized NAD as coenzyme, but at approximately 300-fold higher coenzyme concentration could use NADP. The F1 isozyme exhibited a very low Km for NAD (3 muM) and a higher Km for acetaldehyde (70 muM), while the F2 isozyme was found to have a higher Km for NAD (30 muM) and a low Km for acetaldehyde (0.2 muM). The two isozymes showed similar chloral hydrate and p-chloromercuribenzoate inhibition characteristics, but the F1 isozyme was found to be several orders of magnittude more sensitive to disulfiram, a physiological inhibitor of acetaldehyde oxidation. Based on its disulfiram inhibition characteristics, it has been suggested that the F1 isozyme may be the primary enzyme for oxidizing the acetyldehyde produced during ethanol oxidation in vivo.  相似文献   

4.
1. NAD+ kinase (ATP:NAD+ 2' phosphotransferase, EC 2.7.1.23) has been purified to apparent enzymic homogeneity on Blue Sepharose CL-6B. 2. The molecular weight of the active species is about 260,000 as determined by PAGE and gel chromatography. Protein staining (PAGE) revealed minor bands with molecular weight values of 40,000, 140,000 and 550,000. Subunit studies (SDS-PAGE) gave evidence of a single band of molecular weight approximately 32,000. 3. On the basis of the release patterns of this enzyme from several affinity gels, an elution diagram is proposed as a device to assess the contribution of any of the several displacing agents that can be used to manipulate the desorption of a (enzyme) ligate from an immobilized ligand.  相似文献   

5.
NAD+-dependent formate dehydrogenase was screened in various bacterial strains. Facultative methanol-utilizing bacteria isolated from soil samples, acclimated to a medium containing methanol and formate at pH 9.5, were classified as members of the genus Moraxella. From a crude extract of Moraxella sp. strain C-1, formate dehydrogenase was purified to homogeneity, as judged by disc gel electrophoresis. The enzyme has an isoelectric point of 3.9 and a molecular weight of approximately 98,000. The enzyme is composed of two identical subunits with molecular weights of about 48,000. The apparent Km values for sodium formate and NAD+ were calculated to be 13 mM and 0.068 mM, respectively.  相似文献   

6.
Glucose-6-phosphate dehydrogenase has been purified 1000-fold from pig liver. This enzyme exists as an active dimer of molecular weight 133,000 and an inactive monomer of molecular weight 67,500. The pH of maximum activity is 8.5 and the ionic strength maximum is 0.1 to 0.5 M. Glucose-6-phosphate dehydrogenase is highly specific for NADP+ and glucose 6-phosphate. Apparent Km values of 3.6 muM and 5.4 muM were obtained for glucose 6-phosphate and NADP+. This enzyme is located almost entirely within the soluble portion of the cellular cytoplasm.  相似文献   

7.
NAD+ kinase (ATP:NAD+ 2'-phosphotransferase, EC 2.7.1.23) from yeast has been purified utilizing ion-exchange and NAD+-agarose affinity chromatography to give a 2100-fold purification. The apparent homogeneity of the enzyme preparation was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and analytical ultracentrifugation. The enzyme has a subunit molecular weight of 31,000, and a native molecular weight of 124,000, and is, thus, probably a tetramer. The single form of the enzyme has an apparent isoelectric point of 5.85. Initial velocity studies in the forward direction with both substrates gave intersecting Lineweaver-Burk plots, and this suggests a sequential mechanism in which both substrates are bound before products are released. Replots of these data were linear and gave Km values for NAD+ and ATP of 0.68 mM and 2.3 mM, respectively.  相似文献   

8.
Psychrobacter sp. TAD1 is a psychrotolerant bacterium from Antarctic frozen continental water that grows from 2 to 25 degrees C with optimal growth rate at 20 degrees C. The new isolate contains two glutamate dehydrogenases (GDH), differing in their cofactor specificities, subunit sizes and arrangements, and thermal properties. NADP+-dependent GDH is a hexamer of 47 kDa subunits and it is comparable to other hexameric GDHs of family-I from bacteria and lower eukaria. The NAD+-dependent enzyme, described in this communication, has a subunit weight of 160 kDa and belongs to the novel class of GDHs with large size subunits. The enzyme is a dimer; this oligomeric arrangement has not been reported previously for GDH. Both enzymes have an apparent optimum temperature for activity of approximately 20 degrees C, but their cold activities and thermal labilities are different. The NAD+-dependent enzyme is more cold active: at 10 C it retains 50% of its maximal activity, compared with 10% for the NADP+-dependent enzyme. The NADP+-dependent enzyme is more heat stable, losing only 10% activity after heating for 30 min, compared with 95% for the NAD+-dependent enzyme. It is concluded that in Psychrobacter sp. TAD1 not only does NAD+-dependent GDH have a novel subunit molecular weight and arrangement, but that its polypeptide chains are folded differently from those of NADP+-dependent GDH, providing different cold-active properties to the two enzymes.  相似文献   

9.
A derivative of the flavoprotein pig heart lipoamide dehydrogenase has been described recently (Thorpe, C., and Williams, C.H. (1976) J. Biol. Chem. 251, 3553-3557), in which 1 of the 2 cysteine residues generated on reduction of the intrachain active center disulfide bridge is selectively alkylated with iodoacetamide. This monolabeled enzyme exhibits a spectrum of oxidized bound flavin. The addition of 1 mM NAD+ to this derivative at pH 8.3 causes a decrease in absorbance of approximately 50% at 448 nm, with a concomitant increase at 380 nm. These spectral changes are complete within 3 ms and are reversible. NAD+ titrations generate isosbestic points at 408, 374, and 327 nm; allowing values for the apparent dissociation constant for NAD+ and the extent of bleaching at infinite ligand to be obtained from double reciprocal plots. Between pH 6.1 and 8.8, the apparent KD decreases from 320 to 35 muM, whereas the extrapolated delta epsilon 448 values remain approximately constant at 1/2 epsilon 448. Direct measurement of NAD+ binding by gel filtration at pH 8.8 indicates that the spectral changes are associated with a stoichiometry of 1.2 mol of NAD+ bound/2 mol of FAD. The modified protein is a dimer containing 1 FAD and 1 alkylated cysteine residue/subunit; the native enzyme is also dimeric. The visible spectrum of the species absorbing at 380 nm, approximated by correction for the residual oxidized FAD, shows a single maximum at 384 nm, epsilon 384 = 8.7 mM-1cm-1. Comparison of this spectrum with that of model compounds of known structure suggests that it may represent a reversible covalent flavin adduct induced on binding NAD+.  相似文献   

10.
A single cyclic AMP-dependent protein kinase (EC 2.7.1.37) has been isolated from human platelets by using DEAE-cellulose ion-exchange chromatography and Sephadex G-150 gel filtration. The molecular weight of the protein kinase was estimated to be 86 490. In the presence of cyclic AMP, the protein kinase could be dissociated into a catalytic subunit of molecular weight 50 000, and either one regulatory subunit of molecular weight 110 000 or two regulatory subunits of molecular weights 110 000 and 38 100, depending on the pH used. Recombination of either of the regulatory subunits with the catalytic subunit restored cyclic AMP-dependency in the catalytic subunit. The apparent Km for ATP in the presence of 10 muM Mg2+ was 4 muM (plus cyclic AMP) and 4.3 muM (minus cyclic AMP). The concentration of cyclic AMP needed for half-maximal stimulation of the protein kinase was 0.172 muM and apparent dissociation constants of 3.7 nM (absence of MgATP) and 0.18 muM (presence of MgATP) were exhibited by the "protein kinase-cyclic AMP complex". The enzyme required Mg2+ for maximum activity and showed a pH optimum of 6.2 with histone as substrate. In addition to four major endogenous platelet protein acceptors of apparent molecular weights 45 000, 28000, 18 500, and 11 100, the platelet protein kinase also phosphorylated the exogenous acceptor proteins thrombin, collagen and histone, all capable of inducing platelet aggregation. Prothrombin, a nonaggregating agent, was not phosphorylated.  相似文献   

11.
A highly purified preparation of myosin from Physarum polycephalum has been shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis to contain heavy chains and only one molecular weight class of light chains, of approx. 15 000 daltons. Kinetic investigations of the Ca2+-ATPase and Mg2+-ATPase (ATP phosphohydrolases, EC 3.6.1.3) at pH 8.0 gave Km and V values of 17.3 muM and 1.25 mumol Pi/min per mg, and 2.4 muM and 0.12 mumol Pi/min per mg, respectively. Adenylyl imidodiphosphate, a beta-gamma-imido ATP analog, inhibited the ATPase activity of Physarum myosin competitively with Ki values equal to 350 and 12 muM in the presence of Ca2+ and Mg2+, respectively. The ATPase activity of Physarum myosin was inhibited at a very low rate (t1/2 = 24 h) by the ATP analog, 6,6'-dithiobis(inosinyl imidodiphosphate), with concentrations of inhibitor previously shown to inactivate (t1/2 approximately 10 min) skeletal and cardiac myosins rapidly by reacting with key cysteines.  相似文献   

12.
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [alpha-32P]ATP, [gamma-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the alpha-phosphate for phosphorylation of the 72 000 molecular weight protein.  相似文献   

13.
Lysine epsilon-dehydrogenase, which has been purified to homogeneity from the extract of Agrobacterium tumefaciens ICR 1600, had a molecular weight of approximately 78,000 and consisted of two subunits identical in molecular weight (about 39,000). The enzyme showed a high substrate specificity. In addition to L-lysine, S-(beta-aminoethyl)-L-cysteine was deaminated by the enzyme, but to a far lesser extent. NAD+ and some NAD+ analogs (deamino-NAD+ and 3-acetylpyridine-NAD+) served as a cofactor. The pH optimum was at about 9.7 for the deamination of L-lysine. Although the NAD+ saturation curve was hyperbolic, a sigmoid saturation curve for L-lysine was obtained with the diluted enzyme solution, in which the dimeric enzyme was predominant. The reversible association of the enzyme to the tetramer was induced either by increasing the enzyme concentration or by addition of L-lysine. The preincubation of the enzyme with 5 mM L-lysine resulted in a 2-fold increase in the activity and gave a hyperbolic saturation curve for L-lysine. Upon modification of SH groups of the enzyme with DTNB, neither the interconversion between the dimer and the tetramer nor the activation by L-lysine occurred. These results indicated that the dimeric enzyme was activated by L-lysine and the activation resulted from the association of two dimeric enzymes to form a tetramer.  相似文献   

14.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

15.
1L-Inositol 1-phosphate synthase (EC 5.5.1.4) devoid of bound NAD+ was isolated from mature pollen of Lilium longiflorum ( Easter lily ). The enzyme has a molecular weight of 157,000 +/- 15,000 and a subunit weight of 61,000 +/- 5,000. Kinetic studies of the uninhibited reaction and of inhibition by 2-deoxy-D-glucose 6-phosphate and NADH show the reaction to be ordered sequential with NAD+ adding first. The Michaelis constants for NAD+ and D-glucose 6-phosphate are 2.4 and 65 microM, respectively. The Ki for 2-deoxy-D-glucose 6-phosphate was 8.7 and 2.0 microM, respectively, when D-glucose 6-phosphate or NAD+ was varied. The Ki for NADH and variable NAD+ was 4.7 microM and, for NADH and variable D-glucose 6-phosphate, 3.9 microM.  相似文献   

16.
The purified respiratory chain NADH dehydrogenase of Escherichia coli oxidizes NADH with either dichlorophenolindophenol (DCIP). ferricyanide, or menadione as electron acceptors, with values for NADH are similar with the three electron acceptors (approximately 50 muM). The purified enzyme contains no flavin and has an absolute requirement for FAD, with Km values around 4 muM. The pH optimum of the enzyme appears to be between 6.5 and 7; the optimum is difficult to establish because of nonenzymatic reduction of DCIP at the lower pH values. Potassium cyanide stimulates the DCIP reductase activity about 2-fold, but has no effect on ferricyanide reductase. The enzyme exhibits hyperbolic kinetics with respect to NADH concentration in both the ferricyanide and DCIP reductase assays, but cooperatively is seen in the menadione reductase reaction. NAD+ is an effective competitive inhibitor of the reaction (Ki congruent to 20 muM); in the presence of NAD+, the NADH saturation curve becomes cooperative, even in the DCIP reductase assay. Many adenine containing nucleotides are competitive inhibitors of the enzyme. The apparent Ki values for these nucleotides as inhibitors of the purified enzyme, the membrane-bound NADH dehydrogenase, and the NADH oxidase are equivalent. An examination of inhibitory effects of a series of adenine nucleotides suggests that the inhibitors act as analogues of NAD+, which is the true physiological inhibitor. The results suggest that the enzyme in situ is always partially inhibited by the levels of NAD- in the E coli cell, and thus behaves in a cooperative fashion to changes in the NAD+/NADH ratio. An antibody has been elicited against the purified NADH dehydrogenase. Immunodiffusion and crossed immunoelectrophoresis show that the antibody is directed principally against the NADH dehydrogenase, with some activity against minor contaminants in the purified preparation. The antibody inhibits NADH dehydrogenase activity 50% at saturating levels. When this antibody preparation is used to examine solubilized membrane preparations, two major immunoprecipitates are found. A parallel inhibition of the membrane-bound NADH dehydrogenase and NADH oxidase activities is seen, supporting the hypothesis that the purified enzyme is indeed a component of the respiratory chain-dependent NADH oxidase pathway.  相似文献   

17.
NAD+ kinase--a review   总被引:7,自引:0,他引:7  
NAD+ kinase catalyzes the only (known) biochemical reaction leading to the production of NADP+ from NAD+. Most evidence indicates it is found in the cytoplasm, but reports of its presence in (other) cell bodies can not be discounted. Viewed as a protein, our knowledge of NADK composition and architecture is rudimentary. Though recognized as a large multimeric protein, no agreement is evident for the molecular weight (Mr = approximately 4-65 X 10(4] of the native protein. Is calmodulin an integral subunit of (some, all) NAD+ kinases (analogous to phosphorylase kinase in skeletal muscle)? Or is it an external modulator? Consensus is evident that a subunit of molecular weight 30-35 X 10(3) is a component of the mammalian and yeast kinase. In one case (rabbit liver) two types of subunits are reported to give rise to oligomers differing in molecular weight and catalytic activities. Viewed as an enzyme it is not known why such a complex aggregate is needed for what might otherwise appear to a routine phosphorylation reaction. Rapid equilibrium random (for pigeon liver and C. utilis preparations) and ping-pong (for A. vinelandii kinase) mechanisms have been proposed for the reaction, with multiple reactant binding sites indicated for the random cases. From the perspective of enzyme modulation, the demonstration that green plant and sea urchin egg kinases are targets for calmodulin regulation by intracellular Ca2+ links NADP+ production in these sources to the multi-level discriminatory control functions inherent to this Ca2+-protein complex. Significant questions arise from the results of various investigators considered in this review. These queries offer fertile ground for the selective design of key experiments directed to a better understanding of NAD+ kinase function and pyridine nucleotide biochemistry.  相似文献   

18.
Xanthine dehydrogenase (EC 1.2.1.37) from Pseudomonas acidovorans has been purified to near homogeneity (approx. 65-fold). The enzyme has a molecular weight of about 275 000. Electrophoresis in gels containing sodium dodecyl sulphate showed the presence of two types of subunit with molecular weights of about 81 000 and 63 000. Thus the intact molecule probably contains two of each type of subunit. Xanthine and hypoxanthine are good substrates, and NAD+ is an effective electron acceptor. With xanthine and NAD+ as substrates the purified enzyme has a specific activity of about 20 mumol NADH formed/min per mg protein. Michaelis constants for xanthine and NAD+ are 0.07 and 0.12 mM, respectively, and for hypoxanthine and NAD+ 0.29 and 0.16 mM, respectively.  相似文献   

19.
Dihydroorotase +4,5-L-dihydro-orotate amidohydrolase [EC 3.5.2.3]), which catalyzes the reversible cyclization of N-carbamyl-L-aspartate to L-dihydroorotate, has been purified from orotate-grown Clostridium oroticum. The enzyme is homogeneous when subjected to polyacrylamide gel electrophoresis and is stable at pH 7.6 in 0.3 M NaCl containing 10 muM ZnSO4. The enzyme has a molecular weight of approximately 110,000. Sodium dodecyl sulfate gel electrophoresis, using three different buffer systems, indicated the enzyme is composed of two subunits, each having a molecular weight of 55,000. Dihydroorotase is shown by atomic absorption spectroscopy to be a zinc-containing metalloenzyme with 4 g-atoms of zinc per 110,000 g of protein. The pH optima for the conversion of N-carbamyl-L-aspartate to L-dihydroorotate and for L-dihydroorotate to N-carbamyl-L-aspartate are pH 6.0 and 8.2, respectively. The Km values for N-carbamyl-L-aspartate and for L-dihydroorotate are 0.13 and 0.07 mM, respectively. Inhibitor studies indicate that zinc may be involved in the catalytic activity of the enzyme.  相似文献   

20.
Human liver aldehyde dehydrogenase has been found to be capable of hydrolyzing p-nitrophenyl esters. Esterase and dehydrogenase activities exhibited identical ion exchange and affinity properties, indicating that the same protein catalyzes both reactions. Competitive inhibition of esterase activity by glyceraldehyde and chloral hydrate furnished evidence that p-nitrophenyl acetate was hydrolyzed at the aldehyde binding site for dehydrogenase activity. Pyridine nucleotides modified esterase activity; NAD+ accelerated the rate of p-nitrophenyl acetate hydrolysis more that 5-fold, whereas NADH increased activity by a factor of 2. Activation constants of 117 muM for NAD+ and 3.5 muM for NADH were obtained from double reciprocal plots of initial rates as a function of modifier concentration at pH 7. The kinetics of activation of ester hydrolysis were consistent with random addition of pyridine nucleotide modifier and ester substrate to this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号