首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence specificity of micrococcal nuclease complicates its use in experiments addressed to the still controversial issue of nucleosome phasing. In the case of alpha-satellite DNA containing chromatin from African green monkey (AGM) cells cleavage by micrococcal nuclease in the nucleus was reported to occur predominantly at only one location around position 126 of the satellite repeat unit (Musich et al. (1982) Proc. Natl. Acad. Sci. USA 79, 118-122). DNA control experiments conducted in the same study indicated the presence of many preferential cleavage sites for micrococcal nuclease on the 172 bp long alpha-satellite repeat unit. This difference was taken as evidence for a direct and simple phase relationship between the alpha-satellite DNA sequence and the position of the nucleosomes on the DNA. We have quantitatively analyzed the digestion products of the protein-free satellite monomer with micrococcal nuclease and found that 50% of all cuts occur at positions 123 and 132, 5% at position 79, and to a level of 1-3% at about 20 other positions. We also digested high molecular weight alpha-satellite DNA from AGM nuclei with micrococcal nuclease. Again cleavage occurred mostly at positions 123 and 132 of the satellite repeat unit. Thus digestion of free DNA yields results very similar to those reported by Musich et al. for the digestion of chromatin. Therefore no conclusions on a possible phase relationship can be drawn from the chromatin digestion experiments.  相似文献   

2.
The mechanism underlying sequence-specific positioning of nucleosomes on DNA was investigated. African green monkey alpha-satellite DNA was reconstituted in vitro with histones. Histone octamers were found to adopt one major and several minor positions on the satellite repeat unit, very similar to those positions found previously in vitro, demonstrating that sequence-specific histone-DNA interactions are responsible for nucleosome positioning on this DNA. In order to understand the nature of these interactions in more detail, we have constructed a variant satellite fragment containing an insertion of half a helical DNA turn. The parent fragment directs histones to one major and two overlapping minor positions that are all affected by the insertion. All three frames respond in a unique fashion to the additional five base-pairs. From a quantitative analysis of the nucleosome positions on the engineered fragment, consensus "phasing boxes" as the basis for nucleosome positioning can be ruled out. Instead, our results argue very strongly that nucleosome positioning is due to the independent contribution of many different DNA-histone contacts along the entire core particle, in an apparently additive fashion.  相似文献   

3.
alpha-Satellite DNA containing chromatin from African green monkey cells (CV-1 cells) has been used to study the question whether or not nucleosomes are arranged in phase with the 172 bp repeat unit of the satellite DNA. Digestion experiments with DNAase II led us to exclude a simple phase relationship between the nucleosomal and the satellite DNA repeats. Digestion of CV-1 nuclei with micrococcal nuclease and endogenous nuclease (s) produced a series of sharp bands in the satellite DNA register over a background of heterogeneous length fragments. This observation is explained by a preferential cleavage of certain nucleotide sequences by these nucleases and is not in contradiction to our conclusion that a simple phase relationship does not exist.  相似文献   

4.
By the use of restriction endonucleases the organization of the alpha-satellite DNA from African green monkey cells (Cercopithecus aethiops) has been analyzed. With endo R-HindIII, endo R-AluI and with endo R-EcoRI at conditions of low salt and high pH (endo R-EcoRI) all of the satellite was digested while only a part of the satellite was cleaved with endo R-Bsu and endo R-EcoRI under standard conditions. With each of the four nucleases a series of fragments was formed which were multiplies in size of a basic repeat unit linked in tandem arrays in the intact satellite. The quantitative evaluation of the digestion with each nuclease as well as with combinations of two nucleases yielded information about the distribution of the cleavage sites. While the arrangement of the endo R-HindIII cleavage sites conforms to a random distribution across the entire satellite, the results from the endo R-Bsu and endo R-EcoRI cleavage patterns are consistent with a picture where the cleavage sites are clustered in fractions of the satellite. Since endo R-AluI recognizes the central four nucleotide pairs of the endo R-HindIII cleavage site, the redigestion of the endo R-HindIII dimer with endo R-AluI gave information about the distribution of mutations in the satellite. The results of these experiments together with the comparison of the sequence divergence determined from digestion with endo R-HindIII and endo R-EcoRI lend support to the hypothesis that mutations have affected all bases in the satellite evenly. The gamma-satellite, another fraction of the African green monkey DNA, could be separated by Ag+/CsSO4 density gradient centrifugation into two components. With the three restriction nucleases used both components gave a background of fragments of heterogenous length on gel electrophoresis with some faint bands of no apparent regularity in one case.  相似文献   

5.
By analyzing the accessibility of restriction endonuclease sites in African green monkey alpha-satellite chromatin, we demonstrate the absence of a unique phase relationship between nucleosomes and alpha-satellite DNA. The data indicate a minimum of three different positions for nucleosome cores relative to the alpha-satellite sequence and suggest a random distribution in at least some regions. In addition, while we confirm published reports that staphylococcal nuclease cuts the alpha-satellite sequence in chromatin at a highly preferred site, two-dimensional gel electrophoresis of nuclear digests demonstrates that this site is preferentially cut by staphylococcal nuclease even when it is within the nucleosome core. These data indicate that staphylococcal nuclease is not useful for determining nucleosome positions on alpha-satellite DNA, and perhaps on other specific DNA sequences as well.  相似文献   

6.
Segments of African green monkey DNA containing sequences of the highly reiterated cryptic satellite DNA called α-satellite were selected from a library in λ bacteriophage. This λ library was constructed to enrich for monkey segments that contain (1) irregular regions of α-satellite and (2) α-satellite linked to other monkey sequences. At least 11 of 15 cloned monkey segments between 13 × 103 and 16 × 103 base-pairs in length, selected by hybridization to α-satellite, also include other monkey sequences.In general, α-satellite sequences close to the junctions with non-α-satellite DNA contain an abundance of divergent forms compared to the average frequency of such forms within total α-satellite. Many of the cloned segments are missing some of the HinIII sites that occur once in most monomer units of α-satellite, and likewise several of the cloned segments contain restriction sites that rarely occur in α-satellite as a whole. In some segments HinIII sites occur that are spaced at distances other than the basic multiple of 172 base-pairs. At least one of the cloned segments, however, is composed mainly of typical 172 base-pair long α-satellite monomer units.Several of these cloned DNAs have been mapped by restriction endonuclease digestion and Southern blot analysis and the arrangements of α-satellite and non-α-satellite sequences have been determined. In addition to segments that contain a boundary where satellite meets other types of sequence, some contain two such boundaries and thus satellite flanks a non-α-satellite segment. Further, two different types of non-α-satellite sequence appear to be common to more than one phage, perhaps indicating some recurring organization at boundaries.  相似文献   

7.
Centromeres of mammalian chromosomes are rich in repetitive DNAs that are packaged into specialized nucleoprotein structures called heterochromatin. In humans, the major centromeric repetitive DNA, alpha-satellite DNA, has been extensively sequenced and shown to contain binding sites for CENP-B, an 80-kDa centromeric autoantigen. The present report reveals that African green monkey (AGM) cells, which contain extensive alpha-satellite arrays at centromeres, appear to lack the well-characterized CENP-B binding site (the CENP-B box). We show that AGM cells express a functional CENP-B homolog that binds to the CENP-B box and is recognized by several independent anti-CENP-B antibodies. However, three independent assays fail to reveal CENP-B binding sites in AGM DNA. Methods used include a gel mobility shift competition assay using purified AGM alpha-satellite, a novel kinetic electrophoretic mobility shift assay competition protocol using bulk genomic DNA, and bulk sequencing of 76 AGM alpha-satellite monomers. Immunofluorescence studies reveal the presence of significant levels of CENP-B antigen dispersed diffusely throughout the nuclei of interphase cells. These experiments reveal a paradox. CENP-B is highly conserved among mammals, yet its DNA binding site is conserved in human and mouse genomes but not in the AGM genome. One interpretation of these findings is that the role of CENP-B may be in the maintenance and/or organization of centromeric satellite DNA arrays rather than a more direct involvement in centromere structure.  相似文献   

8.
In DNA transfer experiments, using the cloned thymidine kinase (tk) gene from HSV I as selective marker, highly repetitive DNA from African green monkey cells (α-satellite) was introduced into mouse cells by the calcium technique. The tk+ transformants (transformation is defined as a change in the genotype by introduction of foreign DNA) contained exogenous DNA in amounts that can be visualized in most cases directly in ethidium bromide (EB)-stained gels. In two transformants it represented approx. 0.1% of the host genome. After transfer into the recipient cells the organization of the α-satellite has been changed as deduced by analysis with restriction nucleases. According to in situ hybridization experiments, most (if not all) of the α-satellite is present at one chromosomal location of the host genome.  相似文献   

9.
The DNA of the African green monkey contains three components that are distinguishable by the kinetics of reassociation. The rapidly reassociating component represents about 20% of the total DNA and is composed almost entirely of a sequence (AGMr(HindIII)-1) which is repeated 6.8 x 10(6) times. The majority of the AGMr(HindIII)-1 sequences are organized in long tandem repeats of a segment of 172 base pairs in length. However, a fraction of the AGMr (HindIII)-1 sequences is interspersed with another 37% of the genome. The structure of the chromatin containing the AGMr-(HindIII)-1 sequence is indistinguishable from that containing total DNA. Furthermore, there is nothing inherent in the nucleotide sequence of AGMr(HindIII)-1 which specifies a unique location for nucleosomes.  相似文献   

10.
In the African green monkey genome, 20% of the total DNA consists of a highly reiterated DNA sequence that occurs largely in long tandem arrays of a repeat unit that is 172 base-pairs in length. The DNA of the baboon contains sequences homologous to this repeat unit. However, in the baboon genome, these sequences comprise roughly 6% of the total DNA and alternate in a regular fashion with a DNA segment that may be distantly related to the monkey repeat unit. The sequences in the baboon that are homologous to the monkey repeat unit are contained within a 340 base-pair repeat unit of the highly repeated DNA fraction of the baboon. The extent of nucleotide divergence of the homologous repeated sequences between the two species is estimated to be about 10%.  相似文献   

11.
The organization of α-satellite sequences in a single monkey chromosome has been studied by restriction endonuclease analysis and molecular cloning. A somatic cell hybrid containing the monkey chromosome was isolated by cloning after fusion of the mouse L-cell line B82 (thymidine kinase minus) with primary African green monkey kidney cells and selective growth in HAT medium. Unlike the mouse cells, the hybrid cells contain DNA that hybridizes with the α-satellite DNA of the monkey. The presence of a single α-satellite containing monkey chromosome was demonstrated by Giemsa-11 staining and by the absence of both this chromosome and monkey α-satellite DNA sequences in cells after back-selection in bromodeoxyuridine. Hybridization of restriction endonuclease-digested hybrid cell DNA with a cloned segment of African green monkey α-satellite DNA showed distinctly different patterns from those observed with monkey total DNA. In particular, EcoRI and HaeIII restriction endonuclease sites are much more abundant in the satellite sequences in the thymidine kinase-carrying chromosome than they are in total satellite. A library of hybrid DNA was constructed in a λ bacteriophage. Analyses of purified recombinant phage that hybridized with α-satellite also indicated an abundance of EcoRI and HaeIII sites. Of nine phage studied in detail, no two showed identical distributions of the two restriction sites in the α-satellite sequences, suggesting the independent evolution of different domains within the single chromosome. These results indicate that the thymidine kinase-carrying chromosome contains distinct subsets (domains) of the α-satellite DNA of the whole monkey genome and further, that while the satellite sequence on the single chromosome is distinctive, it is also complex.  相似文献   

12.
An autonomously replicating shuttle vector was used to investigate enhancement of plasmid-chromosome recombination in mammalian host cells by gamma irradiation and UV light. Sequences homologous to the shuttle vector were stably inserted into the genome of African green monkey kidney cells to act as the target substrate for these recombination events. The shuttle vector molecules were irradiated at various doses before transfection into the mammalian host cells that contained the stable insertions. The homologous transfer of the bacterial ampicillin resistance gene from the inserted sequences to replace a mutant ampicillin sensitivity gene on the shuttle vector was identified by the recovery of ampicillin-resistant plasmids after Hirt extraction and transformation into Escherichia coli host cells. Gamma irradiation increased homologous shuttle vector-chromosome recombination, whereas UV light did not increase the frequency of recombinant plasmids detected. Introducing specific double-strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was increased by UV irradiation of the plasmid but did not change with time. The ampicillin-resistant recombinant plasmid molecules analyzed appeared to rise mostly from nonconservative exchanges that involved both homologous and possibly nonhomologous interactions with the host chromosome. The observation that similar recombinant structures were obtained from all the plasmid treatments and host cells used suggests a common mechanism for plasmid-chromosome recombination in these mammalian cells.  相似文献   

13.
14.
We have studied the structure of tandemly repetitive alpha-satellite chromatin (alpha-chromatin) in African green monkey cells (CV-1 line), using restriction endonucleases and staphylococcal nuclease as probes. While more than 80% of the 172-base-pair (bp) alpha-DNA repeats have a HindIII site, less than 15% of the alpha-DNA repeats have an EcoRI site, and most of the latter alpha-repeats are highly clustered within the CV-1 genome. EcoRI and HindIII solubilize approximately 8% and 2% of the alpha-chromatin, respectively, under the conditions used. EcoRI is thus approximately 30 times more effective than HindIII in solubilizing alpha-chromatin, with relation to the respective cutting frequencies of HindIII and EcoRI on alpha-DNA. EcoRI and HindIII solubilize largely non-overlapping subsets of alpha-chromatin. The DNA size distributions of both EcoRI- and HindIII-solubilized alpha-chromatin particles peak at alpha-monomers. These DNA size distributions are established early in digestion and remain strikingly constant throughout the digestion with either EcoRI or HindIII. Approximately one in every four of both EcoRI- and HindIII-solubilized alpha-chromatin particles is an alpha-monomer. Two-dimensional (deoxyribonucleoprotein leads to DNA) electrophoretic analysis of the EcoRI-solubilized, sucrose gradient-fractionated alpha-oligonucleosomes shows that they do not contain "hidden" EcoRI cuts. Moreover, although the EcoRI-solubilized alpha-oligonucleosomes contain one EcoRI site in every 172-bp alpha-DNA repeat, they are completely resistant to redigestion with EcoRI. This striking difference between the EcoRI-accessible EcoRI sites flanking an EcoRI-solubilized alpha-oligonucleosome and completely EcoRI-resistant internal EcoRI sites in the same alpha-oligonucleosome indicates either that the flanking EcoRI sites occur within a modified chromatin structure or that an altered nucleosome arrangement in the vicinity of a flanking EcoRI site is responsible for its location in the nuclease-sensitive internucleosomal (linker) region. Analogous redigestions of the EcoRI-solubilized alpha-oligonucleosomes with either HindIII, MboII or HaeIII (both before and after selective removal of histone H1 by an exchange onto tRNA) produce a self-consistent pattern of restriction site accessibilities. Taken together, these data strongly suggest a preferred nucleosome arrangement within the EcoRI-solubilized subset of alpha-oligonucleosomes, with the centers of most of the nucleosomal cores being approximately 20 bp and approximately 50 bp away from the nearest EcoRI and HindIII sites, respectively, within the 172-bp alpha-DNA repeat. However, as noted above, the clearly preferred pattern of nucleosome arrangement within the EcoRI-solubilized alpha-oligonucleosomes is invariably violated at the ends of every such alpha-oligonucleosomal particle, suggesting at least a partially statistical origin of this apparently non-random nucleosome arrangement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
16.
Individual monomer and dimer units of the highly repeated alpha-component DNA of African Green monkeys were isolated and amplified by molecular cloning in pBR322. The purified sequences were characterized by digestion with restriction endonucleases and by primary nucleotide sequence analysis. Comparison of the cloned units with the 172 base pair long sequence representing the most abundant nucleotide at each position in the set of sequences comprising alpha-component allows the following conclusions. The set of sequences comprising alpha-component is made up of a very large number of related but slightly divergent sequences. Two neighboring repeats of the monomer unit are not necessarily more similar to one another than are randomly isolated monomers.  相似文献   

17.
We describe here the interruption of a cloned African green monkey alpha-satellite array by an 829-base-pair-long nonsatellite DNA segment. Hybridization experiments indicate that the sequences within the interruption are homologous to segments frequently found in the 6-kilobase-pair-long members of the KpnI family of long, interspersed repeats. These data confirm and extend earlier results suggesting that sequences common to the KpnI family can occur independently of one another and in segments of variable lengths. The 829-base-pair-long segment, which is termed KpnI-RET, contains a terminal stretch of adenosine residues preceded by two typical but overlapping polyadenylation sites. KpnI-RET is flanked by direct repeats of a 14-base-pair-long segment of alpha-satellite that occurs only once in the satellite consensus sequence. These structural features suggest that KpnI-RET was inserted into the satellite array as a movable element.  相似文献   

18.
19.
Three different cloned segments of African green monkey DNA that contain α-satellite sequences linked to a previously undescribed, distinct monkey satellite (called deca-satellite) are described here. The cloned segments were derived from a monkey DNA library in λCharon4A that was constructed to select for junctions between α-satellite and other DNA sequences.The structure of the deca-satellite and of a junction between deca-satellite and α-satellite were studied by subcloning appropriate fragments of the original cloned segments and by sequence analysis. Deca-satellite has a ten base-pair repeat unit: the consensus sequence of the repeat units is 5′ A-A-A-C-C-G-G-N-T-C. Sequences homologous to the deca-satellite are in the middle repeated class of genomic DNA. Analysis of the organization of deca-satellite sequences by digestion of total DNA with various restriction endonucleases and hybridization with a cloned deca-satellite probe revealed extensive polymorphism in the genomes of different individual monkeys but not among the tissues of one organism. These observations indicate that the arrangement of deca-satellite sequences is continually changing.An unusual α-satellite repeat unit occurs at a junction between the α-satellite and deca-satellite. It resembles the major baboon α-satellite more closely than it does monkey α-satellite and thereby provides evidence in favor of the “library” hypothesis for satellite evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号