首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoenolpyruvate was found to depress extra oxygen consumption associated with Ca2+ -induced respiratory jump by rat heart mitochondria. Addition of phosphoenolpyruvate to mitochondria which have accumulated Ca2+ in the presence of glutamate and inorganic phosphate causes the release of Ca2+ from mitochondria. The phosphoenolpyruvate-stimulated Ca2+ efflux can be observed with mitochondria loaded with low initial Ca2+ concentration (0.12 mM) in the incubation medium. Measurements of mitochondrial H+ translocation produced by addition of Ca2+ to respiring mitochondria show that phosphoenolpyruvate depresses H+ ejection and enhances H+ uptake by mitochondria. The Ca2+ -releasing effect of phosphoenolpyruvate was found to be significantly stronger than that produced by rotenone when added to mitochondria loaded with Ca2+ in the presence of glutamate and inorganic phosphate. Dithiothreitol cannot overcome the effect of phosphoenolpyruvate on mitochondrial Ca2+ transport.  相似文献   

2.
Insulin secretion in the intact organism, and by the perfused pancreas and groups of isolated perifused islets, is pulsatile. We have proposed a metabolic model of glucose-induced insulin secretion in which oscillations in the ATP/ADP ratio drive alterations in metabolic and electrical events that lead to insulin release. A key prediction of our model is that metabolically driven Ca2+ oscillations will also occur. Using the fluorescent Ca2+ probe, fura 2, digital image analysis, and sensitive O2 electrodes, we investigated cytosolic free Ca2+ responses and O2 consumption in perifused rat islets that had been maintained in culture for 1-4 days. We found that elevated ambient glucose increased the average cytosolic free Ca2+ level, the ATP/ADP ratio, and oxygen consumption, as previously found in freshly isolated islets. Oscillatory patterns were obtained for Ca2+, O2 consumption, and insulin secretion in the presence of 10 and 20 mM glucose. Very low amplitude oscillations in cytosolic free Ca2+ were observed at 3 mM nonstimulatory glucose levels. Evaluation of the Ca2+ responses of a large series of individual islets, monitored by digital image analysis and perifused at both 3 and 10 mM glucose, indicated that the rise in glucose concentration caused more than a doubling of the average cytosolic free Ca2+ value and a 4-fold increase in the amplitude of the oscillations with little change in period. The pattern of Ca2+ change within the islets was consistent with recruitment of responding cells. The coexistence of oscillations with similar periods in insulin secretion, oxygen consumption, and cytosolic free Ca2+ is consistent with the model of metabolically driven pulsatile insulin secretion.  相似文献   

3.
Intraterminal free Ca2+ concentration modulates the subsequent release of neurotransmitters. Depolarization of synaptosomes with 29 mM K+ augments cytosolic free Ca2+ concentration, which is triphasic, the peak times being at 10, 60, and 180 s. We examined the characteristics of each elevation of cytosolic free Ca2+ concentration in rat brain synaptosomes which had been preincubated for 3 min with a Ca2+-channel blocker, such as La3+, diltiazem, nifedipine, or verapamil, and under conditions of hypoxia or acidosis. The concentration of free Ca2+ in the quin-2-loaded rat brain synaptosomes was detected fluorometrically. All these elevations were suppressed in the presence of 200 microM EGTA or 100 microM La3+. At the first phase, the elevation of cytosolic free Ca2+ concentration with high K+ stimuli was significantly inhibited by La3+ (20 microM) or by acidosis (pH 6.7). On the other hand, diltiazem, which is a more potent blocker of the release of Ca2+ from the mitochondria, inhibited the increasing cytosolic free Ca2+ concentration at the third phase in a concentration-dependent manner. Hypoxia also showed inhibition at the third phase. These results suggest that the augmentation of high K+-evoked cytosolic free Ca2+ concentration may be due to the influx of extracellular Ca2+. The increase in cytosolic free Ca2+ concentration at the third phase is no doubt linked to the mitochondrial function.  相似文献   

4.
Mitochondria from guinea-pig cerebral cortex incubated in the presence of Pi or acetate are unable to regulate the extramitochondrial free Ca2+ at a steady-state which is independent of the Ca2+ accumulated in the matrix. This is due to the superimposition on kinetically regulated Ca2+ cycling of a membrane-potential-dependent reversal of the Ca2+ uniporter. The latter efflux is a consequence of a low membrane potential, which correlates with a loss of adenine nucleotide loss from the matrix, enable the mitochondria to maintain a high membrane potential and allow the mitochondria to buffer the extramitochondrial free Ca2+ precisely when up to 200 nmol of Ca2+/mg of protein is accumulated in the matrix. The steady-state extramitochondrial free Ca2+ is maintained as low as 0.3 microM. The Na+-activated efflux pathway is functional in the presence of ATP and oligomycin and accounts precisely for the change in steady-state free Ca2+ induced by Na+ addition. The need to distinguish carefully between kinetic and membrane-potential-dependent efflux pathways is emphasized and the competence of brain mitochondria to regulate cytosolic free Ca2+ concentrations in vivo is discussed.  相似文献   

5.
Addition of ATP to the incubation medium of freshly isolated rat hepatocytes causes a marked inhibition of the efflux of Ca2+ from the cells, and its accumulation in intracellular compartments. After an initial rise in cytosolic free Ca2+ concentration, as indicated by the activation of phosphorylase, Ca2+ is preferentially sequestered in the mitochondria, without any apparent contribution by the endoplasmic reticulum. Impairment of mitochondrial Ca2+ homeostasis by pyridine nucleotide oxidation associated with tert-butyl hydroperoxide metabolism, prevents the ATP-dependent cellular Ca2+ accumulation and causes a release of Ca2+ from the hepatocytes into the medium. Conversely, maintenance of the mitochondrial pyridine nucleotides in a more reduced state, e. g. in presence of 3-hydroxybutyrate in the medium, prevents this hydroperoxide-induced release of intracellular Ca2+. Under conditions of impaired mitochondrial Ca2+ sequestration, there appears to be a redistribution of a minor fraction of the intracellular Ca2+ from the mitochondria to the endoplasmic reticulum. Our results provide additional evidence for the critical involvement of the plasma membrane Ca2+-extruding system in the physiological regulation of the cytosolic free Ca2+ concentration in hepatocytes, and suggest that the mitochondria play a more important role than the endoplasmic reticulum in the regulation of the cytosolic free Ca2+ level when the plasma membrane Ca2+ pump is inhibited.  相似文献   

6.
We show in the accompanying paper that the steady-state level of free Ca2+ maintained by the organelles of permeabilized RINm5F insulinoma cells varies inversely with the ATP/ADP ratio when this ratio is set by addition of creatine phosphokinase and fixed ratios of creatine to creatine phosphate. We, therefore, asked whether acute cyclic alterations in the cytosolic ATP/ADP ratio in the range known to modulate O2 consumption might be involved in regulating the physiological activity of Ca2+ -ATPases and the cytosolic free Ca2+ level. To explore this hypothesis we combined two experimental systems: 1) permeabilized RINm5F insulinoma cells that can maintain a low medium Ca2+ concentration and 2) a cell-free extract of rat skeletal muscle that spontaneously exhibits oscillatory behavior of glycolysis and linked oscillations in the ATP/ADP ratio, when provided with glucose. The free Ca2+ level maintained by the permeabilized cells oscillated in phase with the glycolytic oscillations and correlated closely with the ATP/ADP ratio but not with glucose 6-phosphate, fructose 6-phosphate, orthophosphate, or pH. When glucokinase replaced hexokinase as the glucose phosphorylating enzyme, Ca2+ oscillations were induced by increasing the glucose concentration from 2 to 8 mM. The results demonstrate a link between metabolite changes and free Ca2+ levels in a reconstituted physiological system. They support a model in which oscillations in glycolysis and the ATP/ADP ratio may cause oscillations in cytosolic free Ca2+, beta-cell electrical activity, and insulin release.  相似文献   

7.
Ca2+ release from mitochondria induced by prooxidants   总被引:3,自引:0,他引:3  
A variety of chemically different prooxidants causes Ca2+ release from mitochondria. The prooxidant-induced Ca2+ release occurs from intact mitochondria via a route which is physiologically relevant and may be regulated by protein ADP-ribosylation. When the released Ca2+ is excessively cycled by mitochondria they are damaged. This leads to uncoupling, a decreased ATP supply, and a decreased ability of mitochondria to retain Ca2+. Excessive Ca2+ cycling by mitochondria will deprive cells of ATP. As a result, Ca2+ ATPases of the endoplasmic (sarcoplasmic) reticulum and the plasma membrane are stopped. The rising cytosolic Ca2+ level cannot be counterbalanced due to damage of mitochondria which, under normoxic conditions, act as safety device against increased cytosolic Ca2+. It is proposed that prooxidants are toxic because they impair the ability of mitochondria to retain Ca2+.  相似文献   

8.
The uptake of Ca2+ in isolated mouse liver mitochondria respiring on succinate in the presence of rotenone and added Pi, was inhibited by dibucaine, fluorocitrate, p-hydroxymercuribenzoate (PMB), malonate, palmitoyl-CoA, succinyl-CoA and trifluoroperazine. The release of accumulated Ca2+ was stimulated by arsenite, malonate, PMB, palmitoyl-CoA and succinyl-CoA, whereas the release was inhibited by dibucaine, fluorocitrate, trifluoroperazine, and by oligomycin, especially in the presence of ADP. The pyridine nucleotides were oxidized in mitochondria incubated with PMB. The observations suggest a possible contributory role of reductive carboxylation for the uptake of Ca2+, and a possible role of citrate for the retention of Ca2+ in isolated mouse liver mitochondria.  相似文献   

9.
The maximal amounts of Ca2+ being accumulated (delta Ca2+max) and H+ emitted (delta H+max) by Ca2+-loading mitochondria, with succinate (+rotenone) as respiratory substrate, were evaluated. delta Ca2+max was increased by providing either citrate or ATP to a Pi- and Mg2+-free medium. With citrate, delta H+max was only scarcely increased, so that the effect of the proton-carrying anion resulted essentially from an increase in the Ca2+/H+ ratio, i.e., from preservation of membrane potential. With ATP (+/- oligomycin), the Ca2+/H+ ratio was unaltered; i.e., the increase of delta Ca2+max was paralleled by a related increase in delta H+max. Mitochondria appeared to retain Ca at higher delta pH, i.e., at lower membrane potential, in the presence of ATP. With citrate and ATP together, both the Ca2+/H+ ratio and delta H+max were largely increased, and the product of these two terms, delta Ca2+max, was considerably enlarged. The effect of either citrate or ATP was markedly reinforced in the presence of the other anion. In addition to increasing the Ca2+/H+ ratio, citrate contributed to increasing delta H+max in the presence of ATP, i.e., apparently sensitized mitochondria to the action of ATP. A citrate-induced depression of Ca2+ cycling across the inner membrane, even though pronounced, did not account for the sensitization. Supraadditive effects of citrate and ATP persisted in the presence of MgCl2 and Pi, under conditions of massive Ca2+ loading, and may contribute to the high capacity of mitochondria, in situ, to retain calcium.  相似文献   

10.
Properties of different Ca2+ pools in permeabilized rat thymocytes   总被引:1,自引:0,他引:1  
The regulation of free Ca2+ concentration by intracellular pools and their participation in the mitogen-induced changes of the cytosolic free Ca2+ concentration, [Ca2+]i, was studied in digitonin-permeabilized and intact rat thymocytes using a Ca2+-selective electrode, chlortetracycline fluorescence and the Ca2+ indicator quin-2. It is shown that in permeabilized thymocytes Ca2+ can be accumulated by two intracellular compartments, mitochondrial and non-mitochondrial. Ca2+ uptake by the non-mitochondrial compartment, presumably the endoplasmic reticulum, is observed only in the presence of MgATP, is increased by oxalate and inhibited by vanadate. The mitochondria do not accumulate calcium at a free Ca2+ concentration below 1 microM. The non-mitochondrial compartment has a greater affinity for calcium and is capable of sequestering Ca2+ at a free Ca2+ concentration less than 1 microM. At free Ca2+ concentration close to the cytoplasmic (0.1 microM) the main calcium pool in permeabilized thymocytes is localized in the non-mitochondrial compartment. Ca2+ accumulated in the non-mitochondrial pool can be released by inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a number of cell types. Under experimental conditions in which ATP-dependent Ca2+ influx is blocked, the addition of IP3 results in a large Ca2+ release from the non-mitochondrial pool; thus IP3 acts by activation of a specific efflux pathway rather than by inhibiting Ca2+ influx. SH reagents do not prevent IP3-induced Ca2+ mobilization. Addition of the mitochondrial uncouplers, FCCP or ClCCP, to intact thymocytes results in no increase in [Ca2+]i measured with quin-2 tetraoxymethyl ester whereas the Ca2+ ionophore A23187 induces a Ca2+ release from the non-mitochondrial store(s). Thus, the data obtained on intact cells agree with those obtained in permeabilized thymocytes. The mitogen concanavalin A increases [Ca2+]i in intact thymocytes suspended in both Ca2+-containing an Ca2+-free medium. This indicates a mitogen-induced mobilization of an intracellular Ca2+ pool, probably via the IP3 pathway.  相似文献   

11.
Glucose stimulation of islets is coupled with the rapid intracellular release of myo-inositol 1,4,5-trisphosphate (IP3) and arachidonic acid which in turn mobilize Ca2+ stored in the endoplasmic reticulum (ER). The metabolism of glucose is required for insulin secretion although the link between glucose metabolism and the cellular events resulting in insulin release is unknown. In digitonin-permeabilized islets, glucose 6-phosphate (0.5-4 mM) increased significantly the ATP-dependent Ca2+ content of the ER at a free Ca2+ concentration of 1 microM. At 0.2 microM free Ca2+, glucose 6-phosphate (2-10 mM) had a smaller effect. Glucose, phosphate, mannose 6-phosphate, and fructose 1,6-diphosphate had no effect on the ATP-dependent Ca2+ content of the ER. Glucose 1-phosphate and fructose 6-phosphate also increased ATP-dependent Ca2+ content of the ER, presumably due to conversion to glucose 6-phosphate by islet phosphoglucomutase and phosphoglucoisomerase, respectively. The glucose 6-phosphate increase in the ATP-dependent Ca2+ content of the ER was shown to be mediated by glucose 6-phosphatase localized to the ER. Both arachidonic acid (10 microM) and the Ca2+ ionophore A23187 (2 microM) mobilized Ca2+ stored in the ER by glucose 6-phosphate. However, IP3-induced (10 microM) Ca2+ release from the ER was abolished in the presence of glucose 6-phosphate (0.5-10 mM). We propose that glucose 6-phosphate could provide a regulatory link between glucose metabolism and intracellular Ca2+ regulation by augmenting Ca2+ sequestered in the ER as well as attenuating IP3-induced Ca2+ release. Thus, glucose 6-phosphate would serve as an "off" signal leading to a decrease in intracellular Ca2+ when both the free Ca2+ and glucose 6-phosphate concentrations have increased following glucose stimulus.  相似文献   

12.
The model of "chemical hypoxia" with KCN plus iodoacetic acid mimics the ATP depletion and reductive stress of hypoxia. Here, we examined the effects of chemical hypoxia on cytosolic free Na+ and Ca2+ in single cultured rat hepatocytes by multiparameter digitized video microscopy and ratio imaging of sodium-binding furan indicator (SBFI) and Fura-2. Intracellular Na+ increased from about 10 mM to more than 100 mM after 20 min of chemical hypoxia, whereas cytosolic free Ca2+ remained virtually unchanged. In normoxic hepatocytes, phenylephrine (50 microM) and Arg-vasopressin (20-40 nM) induced Ca2+ oscillations in 70 and 40% of cells, respectively. These Ca2+ oscillations were suppressed after one spike following the onset of chemical hypoxia. Phenylephrine and vasopressin also increased inositol phosphate formation by 22 and 147%, respectively. This effect was suppressed by KCN plus iodoacetate. Intracellular acidosis is characteristic of chemical hypoxia. Intracellular acidosis induced by 40 mM Na-acetate suppressed Ca2+ oscillations but did not inhibit hormone-induced inositol phosphate formation. Cytosolic alkalinization also suppressed Ca2+ oscillations. However, prevention of intracellular acidosis with monensin (10 microM) did not prevent suppression of Ca2+ oscillations during chemical hypoxia. Mitochondrial depolarization with uncoupler did not change free Ca2+ levels during chemical hypoxia, indicating that mitochondria do not regulate free Ca2+ during chemical hypoxia. From these results, we conclude: 1) chemical hypoxia does not block Na+ influx across the plasma membrane; 2) Chemical hypoxia inhibits hormone-stimulated Ca2+ flux pathways across cellular membranes by two different mechanisms: (a) by ATP depletion, which disrupts hormone-myo-inositol 1,4,5-triphosphate coupling, and (b) by intracellular acidosis, which inhibits myo-inositol 1,4,5-triphosphate-stimulated Ca2+ release from intracellular stores; 3) during ATP depletion by chemical hypoxia, mitochondria do not take up Ca2+ to maintain cytosolic free Ca2+ at low concentrations.  相似文献   

13.
The subcellular distribution of 45Ca2+ accumulated by isolated rat hepatocytes exposed to dibutyryl cyclic AMP (dbcAMP) followed by vasopressin (Vp) was studied by means of a nondisruptive technique. When treated with dbcAMP followed by vasopressin, hepatocytes obtained from fed rats accumulated an amount of Ca2+ approximately fivefold higher than that attained under control conditions. Ca2+ released from the mitochondrial compartment by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) accounted for only a minor portion of the accumulated Ca2+. The largest portion was released by the Ca2+ ionophore A23187 and was attributable to a nonmitochondrial compartment. DbcAMP + Vp-treatment also caused a maximal stimulation of glucose production and a twofold increase in cellular glucose 6-phosphate levels. In hepatocytes obtained from fasted rats, dbcAMP + Vp-stimulated Ca2+ accumulation was lower, although with the same subcellular distribution, and was associated with a minimal glucose production. In the presence of gluconeogenetic substrates (lactate plus pyruvate) hepatocytes from fasted rats were comparable to cells isolated from fed animals. However, Ca2+ accumulation and glucose 6-phosphate production could be dissociated in the absence of dbcAMP, in the presence of lactate/pyruvate alone. Under this condition in fact Vp induced only a minimal accumulation of Ca2+ in hepatocytes isolated from fasted rats, although glucose production was markedly increased. Moreover, treatment of fed rat hepatocytes with 1 mM ATP caused a maximal activation of glycogenolysis, but only a moderate stimulation of cellular Ca2+ accumulation. In this case, sequestration of Ca2+ occurred mainly in the mitochondrial compartment. By contrast, the addition of ATP to dbcAMP-pretreated hepatocytes induced a large accumulation of Ca2+ in a nonmitochondrial pool. Additional experiments using the fluorescent Ca2+ indicator Fura-2 showed that dbcAMP pretreatment can enlarge and prolong the elevation of cytosolic free Ca2+ caused by Vp. A nonmitochondrial Ca2+ pool thus appears mainly responsible for the Ca2+ accumulation stimulated by dbcAMP and Vp in isolated hepatocytes, and cyclic AMP seems able to activate Ca2+ uptake in such a nonmitochondrial pool.  相似文献   

14.
The origin and amount of mobilized Ca2+ in chemotactic peptide-stimulated guinea pig neutrophils were examined using biochemical techniques. The total amount of releasable Ca2+ by 20 microM A23187 from the unstimulated intact cells was 0.91 nmol/4 X 10(6) cells, as assessed by change in absorbance of the antipyrylazo III-Ca2+ complex. Two types of internal vesicular Ca2+ pool, mitochondrial and non-mitochondrial pool were identified in the saponin-permeabilized cells. The total amount of releasable Ca2+ was comparable to that accumulated by the non-mitochondrial pool at (1-2) X 10(-7) M of a free Ca2+ concentration. The mitochondrial uncoupler, capable of releasing Ca2+ from the mitochondrial pool, neither modified the basal cytosolic free Ca2+ in quin 2-loaded cells nor caused a Ca2+ efflux from the intact cells. These results suggest that the releasable Ca2+ may be located in the non-mitochondrial pool of unstimulated intact cells, and the mitochondrial pool contains little releasable Ca2+. The addition of fMet-Leu-Phe increased the cytosolic free Ca2+ by two processes: Ca2+ mobilization from internal stores and Ca2+ influx through the surface membrane. The Ca2+ mobilized and effluxed from the intact cells by stimulation with the maximal doses of fMet-Leu-Phe was estimated to be 0.27 nmol/4 X 10(6) cells. Almost equal amounts were released by the maximal doses of inositol 1,4,5-trisphosphate from the non-mitochondrial pool of saponin-treated cells that had accumulated Ca2+ at a free Ca2+ concentration of 1.4 X 10(-7) M. The mechanism related to the Ca2+ influx by fMet-Leu-Phe stimulation was also examined. The addition of nifedipine or phosphatidic acid did not affect the change in the cytosolic free Ca2+ induced by fMet-Leu-Phe, thereby suggesting that the receptor-mediated Ca2+ channel may be involved in the Ca2+ influx.  相似文献   

15.
In cultured neonatal islet cells, glucose (16.7 mM) and K+ (50 mM) increased cytosolic free Ca2+ ([Ca2+]i). The increments in [Ca2+]i induced by either glucose or K+ were similar to those obtained in cultured adult islet cells but only half of that recorded in freshly isolated adult islet cells. These data indicate that, in neonatal islet cells, the reduced insulin release in response to glucose is associated with a diminished increase in [Ca2+]i. This reduced insulin response may not solely be due to an impaired regulation of the ATP-sensitive K+ channels as previously suggested. It may also result from some alteration in the process of Ca2+ inflow through voltage-sensitive Ca2+ channels.  相似文献   

16.
Mitochondria in oligodendrocyte progenitor cells (OPs) take up and release cytosolic Ca2+ during agonist-evoked Ca2+ waves, but it is not clear whether or how they regulate Ca2+ signaling in OPs. We asked whether mitochondria play an active role during agonist-evoked Ca2+ release from intracellular stores. Ca2+ puffs, wave initiation, and wave propagation were measured in fluo-4 loaded OP processes using linescan confocal microscopy. Mitochondrial depolarization, measured by tetramethyl rhodamine ethyl ester (TMRE) fluorescence, accompanied Ca2+ puffs and waves. In addition, waves initiated only where mitochondria were localized. To determine whether energized mitochondria were necessary for wave generation, we blocked mitochondrial function with the electron transport chain inhibitor antimycin A (AA) in combination with oligomycin. AA decreased wave speed and puff probability. These effects were not due to global changes in ATP. We found that AA increased cytosolic Ca2+, markedly reduced agonist-evoked inositol trisphosphate (IP3) production, and also enhanced phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the Ca2+ dependent protein gelsolin. Thus, the reduction in puff probability and wave speed after AA treatment may be explained by competition for PIP2 between phospholipase C and gelsolin. Energized mitochondria and low cytosolic Ca2+ concentration may be required to maintain PIP2, a substrate for IP3 signal transduction.  相似文献   

17.
T Tamagawa  H Niki  A Niki 《FEBS letters》1985,183(2):430-432
The role of cytosolic free Ca2+ in insulin release was evaluated using isolated rat pancreatic islets permeabilized with digitonin and incubated in Ca-EGTA buffers to fix free Ca2+ concentration at arbitrary levels. Ca2+ induced insulin release in a concentration-dependent manner with the threshold being between 0.1 and 1 microM. The hormone release was increased by forskolin and 12-O-tetradecanoyl phorbol-13-acetate (TPA), a potent activator of adenylate cyclase and that of protein kinase C, respectively. The findings suggest that activation of both protein kinase A and protein kinase C modulate insulin release without a concomitant increase in cytosolic free Ca2+.  相似文献   

18.
The mechanism of pyrophosphate (PPi) accumulation in rat liver during acetate metabolism was investigated. Perfusion of the liver with acetate in the presence of noradrenaline and glucagon induced marked accumulation of PPi (2 mumol/g of liver, 200 times that of control). In contrast, perfusion with glutamine, which generates PPi only in the cytosol, caused little accumulation of PPi, even in the presence of the two hormones. The site of PPi accumulation was shown to be the mitochondria by the finding that isolated mitochondria from the liver perfused with acetate and the hormones contained 50 nmol of PPi/mg of protein. The addition of an uncoupler to mitochondria with accumulated PPi caused gradual decrease in their PPi content, with concomitant release of a stoichiometric amount of Ca2+. Similar accumulation of PPi was observed when isolated mitochondria were incubated with acetate and Ca2+. These results show that an increase in cytosolic Ca2+ caused by the co-administration of the two hormones induced uptake of the ion into mitochondria, and that PPi accumulated in mitochondria only when it was generated in the organelles with an elevated concentration of Ca2+. High mitochondrial concentrations of Ca2+ are considered to inhibit inorganic pyrophosphatase through the formation of a stable complex, CaPPi-. Mitochondria with accumulated PPi had normal respiratory activities, and their adenine nucleotide concentrations were increased 2-fold rather than being decreased, the increases also being considered to be caused by their high concentration of Ca2+.  相似文献   

19.
A variety of chemically different prooxidants causes Ca2+ release from mitochondria. This prooxidant-induced Ca2+ release occurs from intact mitochondria via a route which is physiologically relevant and may be regulated by protein monoADP-ribosylation. When the released Ca2+ is excessively 'cycled' by mitochondria (continuously taken up and released) the inner membrane is damaged. This leads to a decreased ability of mitochondria to retain Ca2+, uncoupling of mitochondria, and an impairment of ATP synthesis, which in turn deprives the cell of the energy necessary for the proper functioning of the Ca2+ ATPases of the endoplasmic (sarcoplasmic) reticulum, the nucleus and the plasma membrane. The ensuing rise of the cytosolic Ca2+ level cannot be counterbalanced by the damaged mitochondria which, under normoxic conditions, act as a safety device against an increase of the cytosolic Ca2+ concentration. The impaired ability of mitochondria to retain Ca2+ may lead to cell death. However, there is also evidence emerging that release of Ca2+ from mitochondria may be physiologically important for cell proliferation and differentiation.  相似文献   

20.
We have investigated the effects of glucose on cytosolic free calcium concentration in the insulin-secreting cell line HIT-T15. Addition of glucose (10 mM) caused a 20-75% increase in cytosolic [Ca2+] within 5 minutes compared to controls in the absence of glucose. A maximal increase in cytosolic [Ca2+] was obtained with 5 mM glucose. The magnitude of the response was markedly dependent upon the concentration of extracellular Ca2+, and the rise in cytosolic [Ca2+] was inhibited by verapamil. Cytosolic [Ca2+] was greatly increased by depolarization of the cells with KCl (50 mM), whereas carbamylcholine had no apparent effect. Glucose and KCl were also effective in stimulating insulin release from HIT cells, although carbamylcholine was again ineffective. The secretory response to glucose was also found to be directly related to the concentration of extracellular [Ca2+]. Glucose and KCl, but not carbamylcholine, were found to slightly enhance the production of [3H]-inositol trisphosphate in HIT cells pre-labelled with myo-[3H]-inositol, indicating a modest stimulation of inositol lipid hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号