首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionally relevant features and parameters of the outer, middle, and inner ear were studied morphologically and morphometrically in two species of voles, smaller Microtus arvalis and larger Arvicola terrestris. The findings in these fossorial (i.e., burrowing) rodents with components of surface activity were compared with respective findings reported for taxonomically related muroid rodents representing the same size classes but different eco-morphotypes: obligate subterranean rodents (Ellobius talpinus and Spalax ehrenbergi superspecies) and generalized rodents (Mus domesticus and Rattus norvegicus). The ear in voles was characterized by traits reported for subterranean rodents. The eardrum was round, without a distinct pars flaccida, and had an area of 5.4 mm2 in M. arvalis and 9 mm2 in A. terrestris. The middle ear exhibited reduced goniale, enlarged incus nearly parallel to the manubrium of the malleus. The malleus-incus lever ratio amounted to 2.1 (M. arvalis) and 2.0 (A. terrestris). The malleus-incus complex weighed about 0.8 mg in both vole species. The stapedial footplate had an area of 0.3 mm2 in M. arvalis and 0.4 mm2 in A. terrestris. The cochlea had 2.3 coils in both vole species; the basilar membrane was 8.5 mm and 10.5 mm long in M. arvalis and A. terrestris, respectively. There were on average 1,030 (M. arvalis) and 1,220 (A. terrestris) inner hair cells, and 3,760 (M. arvalis) and 4,250 (A. terrestris) outer hair cells in the organ of Corti. In quantitative terms, all these (as well as some further) traits and parameters were intermediate (related to body size) between those reported for generalized rodents on the one hand and subterranean ones on the other. The sound transmission system of the ear seems to be best tuned to frequencies of about 8-16 kHz with a high-frequency cut-off at about 50-60 kHz. The ear of A. terrestris seems to be tuned to somewhat lower frequencies than that in M. arvalis. In this aspect as well as regarding hearing sensitivity (as judged from the mechanical transmission parameters), voles can be considered intermediate not only in their lifestyle but also in their hearing abilities between the subterranean rodents (mole-vole and blind mole-rat) and the surface dwellers (house mouse and Norway rat).  相似文献   

2.
The marsupial middle ear performs an anatomical impedance matching for acoustic energy travelling in air to reach the cochlea. The size of the middle ear sets constraints for the frequencies transmitted. For generalized placental mammals, it has been shown that the limit for high-frequency hearing can be predicted on the basis of middle ear ossicle mass, provided that the ears fulfil requirements of isometry. We studied the interspecific size variation of the middle ear in 23 marsupial species, with the following measurable parameters: skull mass, condylobasal length, ossicular masses for malleus, incus and stapes, tympanic membrane area, oval window area, and lever arm lengths for malleus and incus. Our results show that the middle ear size grows with negative allometry in relation to body size and that the internal proportions of the marsupial middle ear are largely isometric. This resembles the situation in placental mammals and allows us to use their isometric middle ear model to predict the high-frequency hearing limit for marsupials. We found that the isometry model predicts the high-frequency hearing limit for different marsupials well, indicating that marsupials can be used as auditory models for general therian mammalian hearing. At very high frequencies, other factors, such as the inner ear, seem to constrain mammalian hearing.  相似文献   

3.
The ossicular apparatus of golden moles in the genus Chlorotalpa has received comparatively little attention in the literature, although the malleus is known to be intermediate in size between the "unmodified" malleus of Amblysomus and the hypertrophied mallei found in some other golden moles. In the present study, the middle ear structures of three Chlorotalpa species (C. duthieae, C. sclateri, and C. arendsi) are described. Measurements of middle ear structures were applied into three existing models of middle ear function. The predictions from the models suggest that the airborne hearing of Chlorotalpa species is limited to relatively low frequencies, but the impedance transformation by the middle ear apparatus is expected to be reasonably efficient. The sensitivity of the middle ear apparatus to inertial bone conduction is intermediate between that predicted for Amblysomus and that predicted for species with hypertrophied mallei. Hearing in fossorial mammals may be limited by factors other than the middle ear apparatus: the predictions for Chlorotalpa must therefore be treated with caution. However, a consideration of the "intermediate" middle ear morphology of Chlorotalpa species sheds some light on the origin of ossicular hypertrophy in golden moles. The limited enlargement of the malleus seen in Chlorotalpa is expected to have improved seismic sensitivity by bone conduction significantly at low frequencies, while airborne hearing might not have been adversely affected.  相似文献   

4.
This study is based on the examination of histological sections of specimens of different ages and of adult ossicles from macerated skulls representing a wide range of taxa and aims at addressing several issues concerning the evolution of the ear ossicles in marsupials. Three-dimensional reconstructions of the ear ossicles based on histological series were done for one or more stages of Monodelphis domestica, Caluromys philander, Sminthopsis virginiae, Trichosurus vulpecula, and Macropus rufogriseus. Several common trends were found. Portions of the ossicles that are phylogenetically older develop earlier than portions representing more recent evolutionary inventions (manubrium of the malleus, crus longum of the incus). The onset of endochondral ossification in the taxa in which this was examined followed the sequence; first malleus, then incus, and finally stapes. In M. domestica and C. philander at birth the yet precartilaginous ossicles form a supportive strut between the lower jaw and the braincase. The cartilage of Paauw develops relatively late in comparison with the ear ossicles and in close association to the tendon of the stapedial muscle. A feeble artery traverses the stapedial foramen of the stapes in the youngest stages of M. domestica, C. philander, and Sminthopsis virginiae examined. Presence of a large stapedial foramen is reconstructed in the groundplan of the Didelphidae and of Marsupialia. The stapedial foramen is absent in all adult caenolestids, dasyurids, Myrmecobius, Notoryctes, peramelids, vombatids, and phascolarctids. Pouch young of Perameles sp. and Dasyurus viverrinus show a bicrurate stapes with a sizeable stapedial foramen. Some didelphids examined to date show a double insertion of the Tensor tympani muscle. Some differences exist between M. domestica and C. philander in adult ossicle form, including the relative length of the incudal crus breve and of the stapes. Several differences exist between the malleus of didelphids and that of some phalangeriforms, the latter showing a short neck, absence of the lamina, and a ventrally directed manubrium. Hearing starts in M. domestica at an age in which the external auditory meatus has not yet fully developed, the ossicles are not fully ossified, and the middle ear space is partially filled with loose mesenchyme. The ontogenetic changes in hearing abilities in M. domestica between postnatal days 30 and 40 may be at least partially related to changes in middle ear structures.  相似文献   

5.
In spite of the growing interest in rodents with subterranean activity in general and the spalacids (Spalacidae) in particular, little is known about the biology of most members of this clade, such as the Chinese bamboo rat (Rhizomys sinensis). Here, we analyzed the ear morphology of R. sinensis with respect to hearing specialization for subterranean or aboveground modes of communication. It is well‐known that ecology and style of life of a particular species can be reflected in morphology of its ear, its hearing and vocalization, so we expect that such information could provide us insight into its style of life and its sensory environment. The ratio between the eardrum and stapedial footplate areas, which influences the efficiency of middle ear sound transmission, suggests low hearing sensitivity, as is typical for subterranean species. The cochlea had 3.25 coils and resembled species with good low frequency hearing typical for subterranean mammals. The length of the basilar membrane was 18.9 ± 0.8 mm and its width slowly increased towards the cochlear apex from 60 to 85 μm. The mean density of outer hair cells was 344 ± 22 and of inner hair cells 114 ± 7.3 per 1 mm length of the organ of Corti, and increased apically. These values (except for relatively low hair cell density) usually characterize ears specialized for low frequency hearing. There was no evidence for an acoustic fovea. Apart of low hair cell density which is common in aboveground animals, this species has also relatively large auricles, suggesting the importance of sound localization during surface activity. The ear of the Chinese bamboo rat thus contains features typical for both aboveground and subterranean mammals and suggests that this spalacid has fossorial habits combined with regular aboveground activity. J. Morphol. 277:575–584, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The middle ear structures of eight species of mole in the family Talpidae (Mammalia: Eulipotyphla) were studied under light and electron microscopy. Neurotrichus, Parascalops, and Condylura have a simple middle ear cavity with a loose ectotympanic bone, ossicles of a "microtype" morphology, and they retain a small tensor tympani muscle. These characteristics are ancestral for talpid moles. Talpa, Scalopus, Scapanus, and Parascaptor species, on the other hand, have a looser articulation between malleus and ectotympanic bone and a reduced or absent orbicular apophysis. These species lack a tensor tympani muscle, possess complete bullae, and extensions of the middle ear cavity pneumatize the surrounding basicranial bones. The two middle ear cavities communicate in Talpa, Scapanus, and Parascaptor species. Parascaptor has a hypertrophied malleus, a feature shared with Scaptochirus but not found in any other talpid genus. Differences in middle ear morphology within members of the Talpidae are correlated with lifestyle. The species with middle ears closer to the ancestral type spend more time above ground, where they will be exposed to high-frequency sound: their middle ears appear suited for transmission of high frequencies. The species with derived middle ear morphologies are more exclusively subterranean. Some of the derived features of their middle ears potentially improve low-frequency hearing, while others may reduce the transmission of bone-conducted noise. By contrast, the unusual middle ear apparatus of Parascaptor, which exhibits striking similarities to that of golden moles, probably augments seismic sensitivity by inertial bone conduction.  相似文献   

7.
Abstract

Osteoporosis (OP) is common with advancing age. Several studies have shown a strong correlation between OP and otosclerosis. However, no studies have investigated OP of the malleus, incus or stapes in the human middle ear, its effect on middle ear transfer function. Here, we investigate whether these three ossicles develop OP, and how this affects middle ear transfer function. The effect of OP on middle ear transfer function was investigated in simulations based on a finite element (FE) method. First, the FE model used in our previous study was refined, and optimized by introducing viscoelastic properties to selected soft tissues of the middle ear. Then, the FE model was used to simulate OP of the three ossicles and assess its influence on middle ear transfer function. Other possible age-related changes, such as stiffness of the joints or ligaments in the middle ear, were also investigated. The results indicated that OP of the ossicles could increase the high frequency displacement of both the umbo and stapes footplate (FP). However, the stiffness of the middle ear soft tissue can lead to the decrease of middle ear gain at lower frequencies. Furthermore, loosening of these joints or ligaments could increase displacement of the umbo and stapes FP. In conclusion, although age-related hearing loss is most commonly conceived of as sensorineural hearing loss (SNHL), we found that age-related changes may also include OP and changes in joint stiffness, but these will have little effect on middle ear transfer function in elderly people.  相似文献   

8.

Background  

The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects.  相似文献   

9.
The middle ear bones of Mesozoic mammals are rarely preserved as fossils and the morphology of these ossicles in the earliest mammals remains poorly known. Here, we report the stapes and incus of the euharamiyidan Arboroharamiya from the lower Upper Jurassic (~160 Ma) of northern China, which represent the earliest known mammalian middle ear ossicles. Both bones are miniscule in relation to those in non‐mammalian cynodonts. The skull length/stapedial footplate diameter ratio is estimated as 51.74 and the stapes length as the percentage of the skull length is 4%; both numbers fall into the stapes size ranges of mammals. The stapes is “rod‐like” and has a large stapedial foramen. It is unique among mammaliaforms in having a distinct posterior process that is interpreted as for insertion of the stapedius muscle and homologized to the ossified proximal (stapedial) end of the interhyal, on which the stapedius muscle attached. The incus differs from the quadrate of non‐mammalian cynodonts such as morganucodontids in having small size and a slim short process. Along with lack of the postdentary trough and Meckelian groove on the medial surface of the dentary, the ossicles suggest development of the definitive mammalian middle ear (DMME) in Arboroharamiya. Among various higher‐level phylogenetic hypotheses of mammals, the one we preferred places “haramiyidans” within Mammalia. Given this phylogeny, development of the DMME took place once in the allotherian clade containing euharamiyidans and multituberculates, probably independent to those of monotremes and therians. Thus, the DMME has evolved at least three times independently in mammals. Alternative hypothesis that placed “haramiyidans” outside of Mammalia would require independent acquisition of the DMME in multituberculates and euharamiyidans as well as parallel evolution of numerous derived similarities in the dentition, occlusion pattern, mandibles, cranium, and postcranium between the two groups and between “haramiyidans” and other mammals. J. Morphol. 279:441–457, 2018. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Pulsations of the internal carotid and stapedial arteries produce unwanted sounds (noise) in the middle ear cavity which influence hearing in some mammals. 'Noise' pressure levels calculated from pulse rates, volume pulsations of the arteries, and Fourier analysis of arterial waveforms, correlate well with low frequency thresholds of hearing in the Long-eared hedgehog, Tree shrew and Kangaroo rat. In mammals adapted to hear low frequency sounds, such as the Kangaroo rat and fossorial insectivores, the arteries are enclosed in noise attenuating bony tubes. However, most small mammals possess extended high frequency hearing with little sensitivity at the low frequencies of the arterial sounds. In lower tetrapods such as anurans and most lizards, the broad connection between the middle ear cavity and the pharynx creates a leakage pathway which greatly reduces the noise from the stapedial artery. It is probably for these reasons that the large intratympanic arteries did not disturb hearing in early mammals or submammalian forms.  相似文献   

11.
Cetacean middle ears are unique among mammals in that they have an elongated tympanic membrane, a greatly reduced manubrium mallei, and an incudal crus longum that is shorter than the crus breve. Elongation of the tympanic membrane and reduction of the manubrium is thought to be related to an evolutionary rotation of the incus and malleus out of the plane of the tympanic membrane. We examined if rotation also occurs during ontogeny by comparing the middle ears of two species of dolphins (Delphinus delphis, Stenella attenuata) at different stages of development. We observed that: the incus has the body and crural proportions as in terrestrial mammals early in development; the incudomallear complex rotates approximately 90 degrees following ossification; the tympanic membrane is not elongated until relatively late in development. Therefore, some of the unique characteristics of the cetacean middle ear develop as modifications of an initially terrestrial-like morphology.  相似文献   

12.
Dendrerpeton acadianum from the Westphalian A (Upper Carboniferous) of Joggins, Nova Scotia, is a phylogenetically and chronologically early temnospondyl. Its external cranial anatomy has been used previously to suggest the presence of a tympanic membrane, and thus of an ear adapted to the perception of airborne sound. However, supporting evidence provided by stapedial and braincase morphology has so far been lacking. The braincase and middle ear region have remained almost wholly unknown. CT scanning and 3-D computer reconstruction of BMNH R.436 have been used to shed light on these important areas. Both stapes prove to be present in the specimen; the right stapes is distorted, but the left stapes lies inside the cranial cavity and is perfectly preserved. The latter resembles the stapes of the relatively few other temnospondyls in which the bone has been described and is most similar to that of Doleserpeton . The morphology and orientation of the stapes provide strong evidence for the presence of an ear adapted to the perception of airborne sound, with similarities to the extant anuran condition. The reconstructed braincase shows a high degree of similarity to that of other adequately known temnospondyls. This gives supporting evidence that D. acadianum is correctly placed in the temnospondyl phylogeny and thus demonstrates one of the earliest hearing systems adapted to the perception of airborne sound that can be homologized with the extant anuran condition.  © 2005 The Trustees of the Natural History Museum, Zoological Journal of the Linnean Society , 2005, 143 , 577−597.  相似文献   

13.
The first steps in the formation of the middle ear of the mammalian type, with the tympanum and three auditory ossicles, have only been passed by higher cynodonts. They have an incipient malleus, which developed from the anterior process of the articulare rather than the retroarticular process, which is rudimentary in cynodonts. The tympanic bone is formed of the anterior projections of the angulare. In some gorgonopians, the retroarticular process is elongated and curved anteriorly, resembling the malleus of mammals; however, this is only convergent similarity.  相似文献   

14.
This work presents a biomechanical study of myringosclerosis (MS), an abnormal condition of the ear that produces calcification of the lamina propria of the eardrum. The study researched the transfer of sound to the stapes depending on the localization, dimension and calcification degree of the MS plaques. Results were obtained using a validated finite element model of the ear. The mechanical properties of the lamina propria were modified, in order to model MS plaques, using the rule of mixtures for particle composites considering that the plaques are made of hydroxyapatite particles in a matrix of connective tissue. Results show that the localization and dimension of the plaques are a factor of higher importance than calcification for loss of hearing through MS. The mobility of the stapes decreased with the presence of larger plaques and also when the tympanic annulus and the area of the handle of the malleus were involved.  相似文献   

15.
Morphology of the middle ear of golden moles (Chrysochloridae)   总被引:4,自引:0,他引:4  
The middle ear structures of nine species of golden moles (family Chrysochloridae) were examined under the light microscope. Auditory structures of several of these species are described here for the first time in detail, the emphasis being on the ossicular apparatus. Confirming previous observations, some golden moles (e.g. Amblysomus species) have ossicles of a morphology typical of mammals, whereas others ( Chrysospalax , Chrysochloris , Cryptochloris and Eremitalpa species) have enormously hypertrophied mallei. Golden moles differ in the nature and extent of the interbullar connection, the shape of the tympanic membrane and that of the manubrium. The stapes has an unusual orientation, projecting dorsomedially from the incus. It has been proposed that hypertrophied ossicles in golden moles are adapted towards the detection of seismic vibrations. The functional morphology of the middle ear apparatus is reconsidered in this light, and it is proposed that adaptations towards low-frequency airborne hearing might have predisposed golden moles towards the evolution of seismic sensitivity through inertial bone conduction. The morphology of the middle ear apparatus sheds little light on the disputed ordinal position of the Chrysochloridae.  相似文献   

16.
We studied the middle and inner ears of seven adult coruros (Spalacopus cyanus), subterranean and social rodents from central Chile, using free-hand dissection and routine staining techniques. Middle ear parameters that were focused on here (enlarged bullae and eardrums, ossicles of the "freely mobile type") are believed to enhance hearing sensitivity at lower frequencies. The organ of Corti was of a common mammalian type and revealed three peaks of higher inner hair cell densities. Based on a position frequency map, frequencies were assigned to the respective peaks along the basilar membrane. The first peak at around 300-400 Hz is discussed with respect to the burrow acoustics, while the peak around 10-20 kHz is probably a plesiomorphic feature. The most pronounced peak at around 2 kHz reflects the frequency at which the main energy of vocal communication occurs. The morphology of the ear of the coruro corresponds to the typical pattern seen in subterranean rodents (low frequency and low-sensitivity hearers), yet, at the same time, it also deviates from it in several functionally relevant features.  相似文献   

17.
The middle ear apparatus is composed of three endochondrial ossicles (the stapes, incus and malleus) and two membranous bones, the tympanic ring and the gonium, which act as structural components to anchor the ossicles to the skull. Except for the stapes, these skeletal elements are unique to mammals and are derived from the first and second branchial arches. We show that, in combination with goosecoid (Gsc), the Bapx1 gene defines the structural components of the murine middle ear. During embryogenesis, Bapx1 is expressed in a discrete domain within the mandibular component of the first branchial arch and later in the primordia of middle ear-associated bones, the gonium and tympanic ring. Consistent with the expression pattern of Bapx1, mouse embryos deficient for Bapx1 lack a gonium and display hypoplasia of the anterior end of the tympanic ring. At E10.5, expression of Bapx1 partially overlaps that of Gsc and although Gsc is required for development of the entire tympanic ring, the role of Bapx1 is restricted to the specification of the gonium and the anterior tympanic ring. Thus, simple overlapping expression of these two genes appears to account for the patterning of the elements that compose the structural components of the middle ear and suggests that they act in concert. In addition, Bapx1 is expressed both within and surrounding the incus and the malleus. Examination of the malleus shows that the width, but not the length, of this ossicle is decreased in the mutant mice. In non-mammalian jawed vertebrates, the bones homologous to the mammalian middle ear ossicles compose the proximal jaw bones that form the jaw articulation (primary jaw joint). In fish, Bapx1 is responsible for the formation of the joint between the quadrate and articular (homologues of the malleus and incus, respectively) enabling an evolutionary comparison of the role of a regulatory gene in the transition of the proximal jawbones to middle ear ossicles. Contrary to expectations, murine Bapx1 does not affect the articulation of the malleus and incus. We show that this change in role of Bapx1 following the transition to the mammalian ossicle configuration is not due to a change in expression pattern but results from an inability to regulate Gdf5 and Gdf6, two genes predicted to be essential in joint formation.  相似文献   

18.
Middle ears (515) from 26 species of the rodent family Heteromyidae - genera Dipodomys, Microdipodops, Perognathus, and Liomys - were studied both grossly and histologically, for qualitative and quantitative comparisons. Middle ear modifications characteristic of each genus are qualitatively described. Quantitative comparisons are made among the 26 species in the study. Some correlations between middle ear size and other measurements are discussed. The middle ear is an acoustical transformer that for best efficiency must match the impedance of the cochlea to the impedance of the air in the external auditory meatus. It accomplishes this by a pressure increase and a velocity decrease through the combined effects of the lever and areal ratios; however, because the important consideration is a matching of two impedances rather than an absolute pressure increase, the pressure transformer ratio is a less informative measure of the middle ear's efficiency than is the impedance transform ratio. The impedance transformer mechanism is explained (from a morphological point of view), and equations are presented. Dipodomys, Microdipodops, and Perognathus have a theoretical transmission (at the resonant frequency) of 94-100% of the incident acoustical energy; Liomys, 78-80%. The areal ratio of stapes footplate to 2/3 tympanic membrane is remarkably constant among the species, varying only from 0.04 to 0.07: in Dipodomys and Microdipodops this small ratio is due to the very large tympanic membrane; in Perognathus and Liomys it is due to the extremely small stapes footplate. The lever ratio of incus to malleus varies from 0.28 to 0.33 in Dipodpmys and Microdipodops, from 0.37 to 0.46 in Perognathus, and from 0.55 to 0.60 in Liomys. In addition, the middle ear volumes and the morphology of tympanic membrane, ossicles, ligaments, and muscles, all combine to minimize both mass and stiffness. All these data suggest middle ear mechanisms which are very efficient over a broad frequency range. The middle ear modifications found in heteromyids are adaptive in predator avoidance, especially in areas of little natural cover; nevertheless, contrary to expectations, there is no firm relationship between habitat and the extent of these modifications in the 26 species. However, environment did apparently plan an important role in the evolution of the family, and this is discussed.  相似文献   

19.
Vertebrates inhabit and communicate acoustically in most natural environments. We review the influence of environmental factors on the hearing sensitivity of terrestrial vertebrates, and on the anatomy and mechanics of the middle ears. Evidence suggests that both biotic and abiotic environmental factors affect the evolution of bandwidth and frequency of peak sensitivity of the hearing spectrum. Relevant abiotic factors include medium type, temperature, and noise produced by nonliving sources. Biotic factors include heterospecific, conspecific, or self-produced sounds that animals are selected to recognize, and acoustic interference by sounds that other animals generate. Within each class of tetrapods, the size of the middle ear structures correlates directly to body size and inversely to frequency of peak sensitivity. Adaptation to the underwater medium in cetaceans involved reorganization of the middle ear for novel acoustic pathways, whereas adaptation to subterranean life in several mammals resulted in hypertrophy of the middle ear ossicles to enhance their inertial mass for detection of seismic vibrations. The comparative approach has revealed a number of generalities about the effect of environmental factors on hearing performance and middle ear structure across species. The current taxonomic sampling of the major tetrapod groups is still highly unbalanced and incomplete. Future expansion of the comparative evidence should continue to reveal general patterns and novel mechanisms.  相似文献   

20.
Evolution of the mammalian middle ear.   总被引:7,自引:0,他引:7  
The structure and evolution of the mandible, suspensorium, and stapes of mammal-like reptiles and early mammals are examined in an attempt to determine how, why, and when in phylogeny the precursors of the mammalian tympanic bone, malleus, and incus (postdentary jaw elements and quadrate) came to function in the reception of air-borne sound. The following conclusions are reached: It is possible that at no stage in mammalian phylogeny was there a middle ear similar to that of "typical" living reptiles, with a postquadrate tympanic membrane contracted by an extrastapes. The aquamosal sulcus of cynodonts and other therapsids, usually thought to have housed a long external acoustic meatus, possibly held a depressor mandibulae muscle. In therapsids an air-filled chamber (recessus mandibularis of Westoll) extended deep to the reflected lamina and into the depression (external fossa) on the outer aspect of the angular element. A similar chamber was present in sphenacodontids but pterygoideus musculature occupied the small external fossa. The thin tissues superficial to the recessus mandibularis served as eardrum. Primitively, vibrations reached the stapes mainly via the anterior hyoid cornu, but in dicynodonts, therocephalians, and cynodants vibrations passed mainly or exclusively from mandible to quadrate to stapes and the reflected lamina was a component of the eardrum. In the therapsid phase of mammalian phylogeny, auditory adaptation was an important aspect of jaw evolution. Auditory efficiency, and sensitivity to higher sound frequencies were enhanced by diminution and loosening of the postdentary elements and quadrate, along with transference of musculature from postdentary elements to the dentary. These changes were made possible by associated modifications, including posterior expansion of the dentary. Establishment of a dentary-squamosal articulation permitted continuation of these trends, leading to the definitive mammalian condition, with no major change in auditory mechanism except that in most mammals (not monotremes) the angular, as tympanic, eventually bcame a non-vibrating structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号