首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seventy-five per cent of the N2-fixing activity (measured asthe reduction of C2H2 to C2H4) and 50 per cent of the respiratoryactivity of detached soybean root nodules was lost when thewater potential () of the nodules was lowered from approximately–1 ? 105 Pa (turgid nodules) to –9 ? 105 Pa (moderatelystressed nodules). Severely stressed nodules ( = –1.8? 106 Pa) showed almost total loss of N2-fixing activity andup to 80 per cent loss of respiratory activity. Increasing theoxygen partial pressure (PO2) from 104 to 105 Pa completelyrestored both N2-fixation and respiration in moderately stressednodules, but only partial recovery was possible in severelystressed nodules. The activity of the stressed nodules was verylow at low PO2 (5 ? 103 and 104 Pa). The C2H2-reducing activityof nodule slices, nodule breis, and bacteroids from turgid andmoderately stressed nodules was almost identical but some activitywas lost in the breis and bacteroids from severely stressednodules. Calculations showed that at low PO2 (104 and 2 ? 104Pa), the rate of O2 diffusion into severely stressed noduleswas ten times lower than that for turgid nodules, but only fourtimes lower at a higher PO2 (4 ? 104 Pa). Carbon monoxide inhibitionof C2H2 reduction was slower in stressed nodules than in turgidnodules. The results are discussed in view of the possible developmentof a physical barrier to gaseous diffusion and/or the possiblealtered affinity of the nodule leghaemoglobin for O2 in thewater-stressed nodules.  相似文献   

2.
Subacute necrotising encephalomyopathy (Leigh syndrome) due to cytochrome c oxidase (COX) deficiency is often caused by mutations in the SURF1 gene, encoding the Surf1 protein essential for COX assembly. We have investigated five patients with different SURF1 mutations resulting in the absence of Surf1 protein. All of them presented with severe and generalised COX defect. Immunoelectrophoretic analysis of cultured fibroblasts revealed 85% decrease of the normal-size COX complexes and significant accumulation of incomplete COX assemblies of 90-120 kDa. Spectrophotometric assay of COX activity showed a 70-90% decrease in lauryl maltoside (LM)-solubilised fibroblasts. In contrast, oxygen consumption analysis in whole cells revealed only a 13-31% decrease of COX activity, which was completely inhibited by detergent in patient cells but not in controls. In patient fibroblasts ADP-stimulated respiration was 50% decreased and cytofluorometry showed a significant decrease of mitochondrial membrane potential DeltaPsi(m) in state 4, as well as a 2.4-fold higher sensitivity of DeltaPsi(m) to uncoupler. We conclude that the absence of the Surf1 protein leads to the formation of incomplete COX complexes, which in situ maintain rather high electron-transport activity, while their H(+)-pumping is impaired. Enzyme inactivation by the detergent in patient cells indicates instability of incomplete COX assemblies.  相似文献   

3.
Transfer of algal cells of Chlorella regularis from 3% CO2 inair into ordinary air in the light increased external carbonicanhydrase (CA) activity as well as photosynthetic affinity forCO2 by several-fold within 2 h. Since no noticeable differencewas observed in CA activity between intact cells and cell homogenates,CA seemed to be mainly localized on the cell surface. Changesin CA activity and K?(CO2) of photosynthesis were not observedin the dark. CA induction was 50%-inhibited by incubation with10 µM DCMU during adaptation of high-CO2 cells to air,whereas it was considerably suppressed when high-CO2 cells preincubatedwith DCMU in the light for 6 h or without DCMU in the dark for24 h were used. The change in K?(CO2) of photosynthesis wasonly slightly affected by DCMU. Uncoupler like carbonylcyanide-m-chlorophenyl-hydrazone(CCCP) and inhibitors of mitochondrial respiration (KCN plussalicylhydroxamic acid) suppressed CA induction during adaptationof high-CO2 cells to low CO2 conditions. These results suggest that photosynthesis is not essential forCA induction in Chlorella regularis when some amounts of photosyntheticproducts are previously stored in the cells and respirationis active. A decrease in K?(CO2) of photosynthesis during adaptationfrom high to low CO2 was mostly independent on photosynthesis.However, light is essential for both phenomena. (Received July 16, 1990; Accepted January 21, 1991)  相似文献   

4.
Leigh syndrome with cytochrome oxidase (COX) deficiency has been associated with SURF1 mutations. For patient diagnosis, distinction between neutral polymorphisms and pathogenic missense SURF1 mutations in Leigh syndrome is essential. We show that several missense SURF1 mutations did not allow a stable protein to be expressed. Absence of immunologically reactive SURF1 is, therefore, helpful to demonstrate their pathogenicity. In addition, we show that out of two previously described missense mutations housed by the same allele, only one, the T737 C was pathogenic. Indeed, transfection of T737 C mutated SURF1 in SURF1-deficient cells did not restore normal SURF1 stability and COX activity. On the contrary, the G604 C-mutated SURF1 did it and, hence, is a neutral variant.  相似文献   

5.
Some plant species show constant rates of respiration and photosynthesismeasured at their respective growth temperatures (temperaturehomeostasis), whereas others do not. However, it is unclearwhat species show such temperature homeostasis and what factorsaffect the temperature homeostasis. To analyze the inherentability of plants to acclimate respiration and photosynthesisto different growth temperatures, we examined 11 herbace-ouscrops with different cold tolerance. Leaf respiration (Rarea)and photosynthetic rate (Parea) under high light at 360 µll–1 CO2 concentrations were measured in plants grown at15 and 30°C. Cold-tolerant species showed a greater extentof temperature homeostasis of both Rarea and Parea than cold-sensitivespecies. The underlying mechanisms which caused differencesin the extent of temperature homeostasis were examined. Theextent of temperature homeostasis of Parea was not determinedby differences in leaf mass and nitrogen content per leaf area,but by differences in photosynthetic nitrogen use efficiency(PNUE). Moreover, differences in PNUE were due to differencesin the maximum catalytic rate of Rubisco, Rubisco contents andamounts of nitrogen invested in Rubisco. These findings indicatedthat the temperature homeostasis of photosynthesis was regulatedby various parameters. On the other hand, the extent of temperaturehomeostasis of Rarea was unrelated to the maximum activity ofthe respiratory enzyme (NAD-malic enzyme). The Rarea/Parea ratiowas maintained irrespective of the growth temperatures in allthe species, suggesting that the extent of temperature homeostasisof Rarea interacted with the photosynthetic rate and/or thehomeostasis of photosynthesis.  相似文献   

6.
The absorption spectrum of intact cels of Rhodotorula mucilaginosaexhibits three absorption peaks for carotenoids and a Soretband for cytochrome(s). The difference spectrum between thereduced and oxidized states indicates there are components ofcytochrome b, c(c1) and a+a3. However, the respiratory aspectof this strain differs significantly from that of baker's yeast,Saccharomyces cerevisiae. The respiratory capacity is strikinglyenhanced in the transition from the lag to the logarithmic phaseof growth, and is accompanied with a special increase in cytochromeoxidase. Addition of TMPD (plus ascorbate) in the presence ofglucose barely affects oxygen consumption of the cells duringthis period, whereas it markedly affects consumption in oldercells. Sodium azide slightly inhibits respiration in the courseof growth, except during this limited transitional period. Azide-insensitiverespiration is also seen in the mitochondrial fraction preparedfrom cells grown to the stationary state. A similar situationis found with antimycin A. Morphological investigations were carried out electron-microscopicallyon the cells of different growth stages. (Received September 16, 1969; )  相似文献   

7.
One of the most frequent forms of Leigh syndrome (LS), a severe neurodegenerative, genetically heterogenous disease, is associated with cytochrome c oxidase (COX) deficiency. No mutations in any of the 13 polypeptide subunits of human COX have been detected in LS patients. Recently, SURF1, a positional candidate gene for LS has been identified on chromosome 9q34. We present the identification of SURF1 mutations in a randomly chosen group of Polish patients with a classical form of LS. Sequence analysis revealed the presence of a novel 704T-->C transition (Met235Thr), and two recurrent dinucleotide deletions (758delCA, 845delCT), as well as one novel polymorphic 573C-->G transversion (Thr191Thr). 845delCT was identified in 66% of all our patients in homozygous or heterozygous form. Our study confirms the recent observations that SURF1 is consistently involved in disorders of the mitochondrial respiratory chain in patients with typical Leigh syndrome.  相似文献   

8.
The kinetics of Pi uptake by phosphate-starved and non-starvedtobacco cells (Nicotiana tabacum BY-2) suspension culture wasinvestigated. The kinetic parameters of Pi uptake were determinedby computer simulation of the curve that represented the time-dependentloss of Pi from the culture medium. The uptake profile couldbe completely explained by assuming the existence of only onekind of Michaelis-Menten-type Pi-transport system with an affinityfor Pi (Km) of about 2.5 µM (the lowest value reportedto date) in both Pi-starved and non-starved cells. No evidencewas obtained suggesting the existence of a "low-affinity" Pi-uptakesystem that has been postulated to exist in several other plantmaterials. The Vmax for uptake of Pi by non-starved cells was12 nmol per minute per milliliter of packed cell. Phosphatestarvation increased the Vmax more than 5-fold, while it hadno effect on the affinity for Pi. Vmax began to increase (atan almost constant rate) just after loss of all Pi from theculture medium and it reached a maximum about 16 hours later.This induction process was completely prevented by the additionof cycloheximide to the culture medium. All these results suggestthat Pi starvation increases the synthesis of a phosphate-carriercomplex that is postulated to be involved in the Pi-uptake process. (Received August 12, 1994; Accepted December 26, 1994)  相似文献   

9.
The effects of night-time temperature, leaf-to-air vapour pressuredeficit (VPD) and water stress on CO2 recycling in Bromeliahumilis Jacq. grown under two light and nitrogen regimes wereinvestigated. At night-time temperatures above 30°C, integratednet dark CO2 uptake was severely reduced and CO2 for malatesynthesis was mainly derived from dark respiration. At 35°C,up to 84% of the CO2 liberated by dark respiration was refixedinto malic acid. Below 30 °C only nitrogen deficient plantsshowed significant recycling. No significant differences wereobserved between high and low light grown plants in CO2 recycling.A doubling of leaf-to-air VPD from 7-46 Pa kPa–1 to 15.49Pa kPa–1 resulted in a 2- to 20-fold decrease in leafconductance and about 50 to 65% reduction in integrated darkCO2 uptake. However, about twice as much CO2 was recycled atthe higher VPD as in the lower. Ten days of water stress resultedin 80 to 100% recycling of respiratory CO2. Under high VPD andwater stress treatments, the amount of water potentially savedthrough recycling of CO2 reached 2- to 6-fold of the actualtranspiration. In general, nitrogen deficient plants had higherper cent recycling of respiratory CO2 in response to high night-timetemperature, increased VPD or water stress. The results emphasizethe ecological relevance of carbon recycling in CAM plants. Key words: Bromelia humilis, CAM, PPFD, dark respiration, temperature, VPD, water stress  相似文献   

10.
11.
Short-term effects of water deficit on nitrogenase activitywere investigated with hydroponically grown soybean plants (Glycinemax L. Merr. cv. Biloxi) by adding polyethylene glycol (PEG)to the hydroponic solution and measuring nitrogenase activity,nodule respiration, and permeability to oxygen diffusion (Po).These experiments showed a rapid decrease in acetylene reductionactivity (ARA) and nodule respiration. A consequence of thedecreased respiration rate was that Po calculated by Fick'sLaw also decreased. However, these results following PEG treatmentwere in direct conflict with a previous report of stabilityin Po determined by using an alternative technique. To resolvethis conflict, an hypothesis describing a sequence of responsesto the initial PEG treatment is presented. An important findingof this study was that the response to water deficit inducedby PEG occurred in two stages. The first stage of decreasednodule activity was O2-limited and could be reversed by exposingthe nodules to elevated pO2. The second stage which developedafter 24 h of exposure to PEG resulted in substantial loss innodule activity and this activity could not be recovered withincreased pO2. Severe water deficit treatments disrupt noduleactivity to such a degree that O2 is no longer the major limitation. Key words: Glycine max, N2 fixation, soybean, oxygen permeability, water deficit  相似文献   

12.
Diffusion resistance to oxygen within nodules was calculatedusing the respiratory quotient (RQ) of nodules from intact plantsof subterranean clover (Trifolium subterraneum L.) cv. SeatonPark nodulated by Rhizobiun trifolii WU95. From 21 to 52% O2,the RQ remained between 0.94 and 1.04, whereas at 10% O2, theRQ was 1.65. When nodulated roots of intact plants were exposedto sub-ambient pO2 in a continuous flow-through system, respirationdeclined immediately, followed by a partial recovery within30 min. The magnitude of the final respiration rate was dependentupon the pO2 in the gas stream. Initial rates of respirationwere re-established after 24 h at sub-ambient pO2 as a resultof changes in the resistance of the variable barrier to oxygendiffusion within the nodules. Nitrogenase activity also decreasedlinearly with decreasing pO2 in the gas stream, but partialrecovery occurred after 24 h incubation at sub-ambient pO2.Maximum rates of nitrogenase activity occurred at rhizosphereoxygen concentrations between 21% and 36% O2. Resistance tothe diffusion of oxygen within the nodules increased at supra-ambientpO2 and at oxygen concentrations above 36% O2, resulted in adecrease in both nitrogenase activity and nodulated root respiration.The diffusion resistance of nodules to oxygen increased rapidlyin the presence of either supra-ambient pO2 or saturating pC2H2.Reductions in nodule diffusion resistance either during recoveryfrom exposure to 10% acetylene or to sub-ambient pO2 occurredmore slowly. It is concluded that subterranean clover is welladapted for maximum nitrogen fixation at ambient pO2. Key words: Nitrogenase activity, oxygen, subterranean clover, diffusion resistance  相似文献   

13.
We studied the kinetics of inorganic phosphate (P1) uptake from0.1–1,000 µM P1 by protoplasts from suspension-culturedcells of Catharanthus roseus (L.) G. Don. Concentration dependenceof [32P]P1 uptake revealed two kinetically different uptakesystems, a high-affinity system and a low-affinity system, withKm values of 3.0 and 47 µM, respectively. Protoplastsfrom cells grown in Pi-rich media had a medium level of thelow-affinity activity and a very low level of the high-affinityactivity. It appeared low-affinity system is expressed constitutively,while the high-affinity system is regulated by the availabilityof Pi. When cells grown in a Pi-rich media were transferredto Pi-depleted media, the high-affinity activity increased significantlyafter 2 d, but the low-affinity activity was barely changed.Upon addition of 10 mM Pi, the high level of the high-affinityactivity fell to almost undetectable level in 1d. Both uptakesystems exhibited maximum activity between pH 5 and 6. 1 Present address: Tokyo Research Laboratories, Kyowa HakkoKogyo Co., Ltd., 3-6-6 Asahi-cho, Machida, Tokyo, 194 Japan.  相似文献   

14.
The human renal Na-PO4cotransporter gene NaPi-3 was expressed in human embryonic kidneyHEK-293 cells, and the transport characteristics were measured in cellstransfected with a vector containing NaPi-3 or with the vector alone(sham transfected). The initial rate of32PO4influx had saturation kinetics for external Na andPO4 with K Na1/2 of 128 mM(PO4 = 0.1 mM) andK PO41/2of 0.084 mM (extracellular Na = 143 mM) in sham- and NaPi-3-transfectedcells expressing the transporter. Transfection had no effect on theNa-independent 32PO4influx, but transfection increased Na-dependent32PO4influxes 2.5- to 5-fold. Of the alkali cations, only Na significantly supported PO4 influx. Arsenateinhibited flux with an inhibition constant of 0.4 mM. The phosphatetransport in sham- and NaPi-3-transfected cells has nearly the sametemperature dependence in the absence and presence of extracellularNa. The Na-dependent phosphate flux decreased with pH insham-transfected cells but was pH independent in transfected cells. TheNa-dependent32PO4influx was inhibited byp-chloromercuriphenylsulfonate,phosphonoformate, phloretin, vanadate, and5-(N-methyl-N-isobutyl)-amiloridebut not by amiloride or other amiloride analogs. These functional characteristics are in general agreement with the known behavior ofNaPi-3 homologues in the renal tubule of other species and, thus,demonstrate the fidelity of this transfection system for the study ofthis protein. Commensurate with the increased functional expression,there was an increase in the amount of NaPi-3 protein by Westernanalysis.

  相似文献   

15.
Phosphate uptake kinetics of Synechococcus sp. WH7803 and Thalassiosiraweissflogii were studied in axenic batch culture. Phosphate-repleteSynechococcus sp. WH7803 cells have a lower affinity for inorganicphosphate (Pi) (Ks = 67 µmol l–1) than Pi-starvedcells (Ks = 3.1 µmol l–1). The Ks of Pi-starvedcells increased  相似文献   

16.
Myoglobin oxygen dissociation by multiwavelength spectroscopy   总被引:3,自引:0,他引:3  
Schenkman, Kenneth A., David R. Marble, David H. Burns, andEric O. Feigl. Myoglobin oxygen dissociation by multiwavelength spectroscopy. J. Appl. Physiol. 82(1):86-92, 1997.Multiwavelength optical spectroscopy was used todetermine the oxygen-binding characteristics for equine myoglobin.Oxygen-binding relationships as a function of oxygen tension weredetermined for temperatures of 10, 25, 35, 37, and 40°C, at pH 7.0. In addition, dissociation curves were determined at 37°C for pH6.5, 7.0, and 7.5. Equilibration was achieved with a myoglobinsolution, at the desired temperature and pH, and 16 oxygen-nitrogen gasmixtures of known oxygen fraction. Correction for the inevitablepresence of metmyoglobin was made by using a three-component leastsquares analysis and by correcting the end point oxymyoglobin spectrafor the presence of metmyoglobin. ThePO2 at which myoglobin ishalf-saturated with O2 (P50) was determined to be 2.39 Torr at pH 7.0 and 37°C. The myoglobin dissociationcurve was well fit by the Hill equation [saturation = PO2/(PO2 + P50)].

  相似文献   

17.
Mechanisms that affect thermal tolerance of ectothermic organismshave recently received much interest, mainly due to global warmingand climate-change debates in both the public and in the scientificcommunity. In physiological terms, thermal tolerance of severalmarine ectothermic taxa can be linked to oxygen availability,with capacity limitations in ventilatory and circulatory systemscontributing to oxygen limitation at extreme temperatures. Thepresent review briefly summarizes the processes that definethermal tolerance in a model cephalopod organism, the cuttlefishSepia officinalis, with a focus on the contribution of the cephalopodoxygen-carrying blood pigment, hemocyanin. When acutely exposedto either extremely high or low temperatures, cuttlefish displaya gradual transition to an anaerobic mode of energy productionin key muscle tissues once critical temperatures (Tcrit) arereached. At high temperatures, stagnating metabolic rates anda developing hypoxemia can be correlated with a progressivefailure of the circulatory system, well before Tcrit is reached.However, at low temperatures, declining metabolic rates cannotbe related to ventilatory or circulatory failure. Rather, wepropose a role for hemocyanin functional characteristics asa major limiting factor preventing proper tissue oxygenation.Using information on the oxygen binding characteristics of cephalopodhemocyanins, we argue that high oxygen affinities (= low P50values), as found at low temperatures, allow efficient oxygenshuttling only at very low venous oxygen partial pressures.Low venous PO2s limit rates of oxygen diffusion into cells,thus eventually causing the observed transition to anaerobicmetabolism. On the basis of existing blood physiological, molecular,and crystallographical data, the potential to resolve the roleof hemocyanin isoforms in thermal adaptation by an integratedmolecular physiological approach is discussed.  相似文献   

18.
Rates of net photosynthesis, PN, and dark respiration of Viciafaba plants were measured in the laboratory in clean air andin air containing up to 175 parts 10–9 (500 µg m–3)SO2. At all SO2 concentrations exceeding 35 parts 10–9,PN was inhibited compared with clean air. At light saturation,the magnitude of inhibition depended on SO2 concentration butat low irradiances the inhibition was independent of concentration.Dark respiration rates increased substantially, independentof concentration. When exposures continued for up to 3 days,PN returned to clean air values about 1 h after fumigation ceased:dark respiration recovered after one photoperiod. There wereno visible injuries. Reviewing possible mechanisms responsible for the inhibitionof PN, it is suggested that SO2 competes with CO2 for bindingsites in RuBP carboxylase. Analysis of resistance analoguesdemonstrates that SO2 altered both stomatal and internal (residual)resistances. A model of crop photosynthesis shows the implications of theobserved responses for the growth of field crops in which plantsare assumed to respond like laboratory plants. Photosynthesisof the crop would be less sensitive than that of individualplants to SO2 concentration. Daily dry matter accumulation ofhypothetical ‘polluted crops’ would be substantiallyless than clean air values but would vary relatively littlewith SO2 concentration. It is concluded that physiological basesexist to account for observed reductions in growth of plantsat very low SO2 concentrations, and that thresholds for plantresponses to SO2 require reassessment.  相似文献   

19.
Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism of this interaction and the consequences for its likely physiological role. The oxygen reactive site in cytochrome oxidase contains both heme iron (a3) and copper (CuB) centers. NO inhibits cytochrome oxidase in both an oxygen-competitive (at heme a3) and oxygen-independent (at CuB) manner. Before inhibition of oxygen consumption, changes can be observed in enzyme and substrate (cytochrome c) redox state. Physiological consequences can be mediated either by direct "metabolic" effects on oxygen consumption or via indirect "signaling" effects via mitochondrial redox state changes and free radical production. The detailed kinetics suggest, but do not prove, that cytochrome oxidase can be a target for NO even under circumstances when guanylate cyclase, its primary high affinity target, is not fully activated. In vivo organ and whole body measures of NO synthase inhibition suggest a possible role for NO inhibition of cytochrome oxidase. However, a detailed mapping of NO and oxygen levels, combined with direct measures of cytochrome oxidase/NO binding, in physiology is still awaited. mitochondria; cytochrome oxidase  相似文献   

20.
Curtis, Scott E., Thomas A. Walker, W. E. Bradley, andStephen M. Cain. Raising P50increases tissue PO2 in canineskeletal muscle but does not affect criticalO2 extraction ratio.J. Appl. Physiol. 83(5):1681-1689, 1997.Affinity of hemoglobin (Hb) forO2 determines in part the rate ofO2 diffusion from capillaries tomyocytes by altering capillary PO2.We hypothesized that a decrease in HbO2 affinity (increasedP50) would increase capillary and tissue PO2(PtiO2) andimprove O2 consumption duringischemia. To test this hypothesis, blood flow to the pump-perfused lefthindlimb of 18 anesthetized and paralyzed dogs was progressively decreased over 90 min while hindlimb O2 consumption andO2 delivery (O2)and PtiO2 weremeasured at the muscle surface. Arterial PO2 was maintained at 150 ± 10 Torr in all dogs. We increased P50by 12.3 ± 0.9 (SE) Torr in nine dogs with RSR-13, an allosteric modifier of Hb. This decreased arterialO2 saturation to 90-92% butincreased meanPtiO2 from 35.5 ± 11.6 to 44.1 ± 15.2 (SD) Torr(P < 0.05) with no change incontrols (n = 9).O2 extraction ratio at criticalO2was 74 ± 2% in controls and 79 ± 1% in RSR-13-treated dogs(P = not significant).PtiO2 was30-40% higher in the RSR-13-treated group at anyO2above critical but did not differ between groups below criticalO2.Perfusion heterogeneity and convergence of the dissociation curvesnear criticalO2 may have mitigated any effect of increasedP50 onO2 diffusion. Still, increasingP50 by 12 Torr with RSR-13significantly increased PtiO2 atO2values above critical.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号