首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wound-induced systemic expression of defensive proteinase inhibitor (PI) genes in tomato plants requires the action of systemin and its precursor protein prosystemin. Although it is well established that systemin induces PI expression through the octadecanoid pathway for jasmonic acid (JA) biosynthesis, relatively little is known about how systemin and JA interact to promote long-distance signaling between damaged and undamaged leaves. Here, this question was addressed by characterizing a systemin-insensitive mutant (spr1) that was previously identified as a suppressor of prosystemin-mediated responses. In contrast to JA biosynthetic or JA signaling mutants that lack both local and systemic PI expression in response to wounding, spr1 plants were deficient mainly in the systemic response. Consistent with this phenotype, spr1 plants exhibited normal PI induction in response to oligosaccharide signals that are thought to play a role in the local wound response. Moreover, spr1 abolished JA accumulation in response to exogenous systemin, and reduced JA accumulation in wounded leaves to approximately 57% of wild-type (WT) levels. Analysis of reciprocal grafts between spr1 and WT plants showed that spr1 impedes systemic PI expression by blocking the production of the long-distance wound signal in damaged leaves, rather than inhibiting the recognition of that signal in systemic undamaged leaves. These experiments suggest that Spr1 is involved in a signaling step that couples systemin perception to activation of the octadecanoid pathway, and that systemin acts at or near the site of wounding (i.e. in rootstock tissues) to increase JA synthesis to a level that is required for the systemic response. It was also demonstrated that spr1 plants are not affected in the local or systemic expression of a subset of rapidly induced wound-response genes, indicating the existence of a systemin-independent pathway for wound signaling.  相似文献   

2.
Li C  Zhao J  Jiang H  Wu X  Sun J  Zhang C  Wang X  Lou Y  Li C 《Plant & cell physiology》2006,47(5):653-663
The systemic defense response of tomato plant in response to insect attack and wounding is regulated by the 18 amino acid peptide systemin and the phytohormone jasmonic acid (JA). Recent genetic analyses based mainly on spr (suppressors of prosystemin-mediated responses) mutant screens have led to the hypothesis that systemin acts at, or near, the site of wounding to amplify the production of JA, which in turn functions as a mobile signal to promote the systemic defense response. In order to identify more components involved in the systemin/JA-signaled defense response, we carried out a larger scale screen for new spr mutants in tomato. Here we describe the characterization of spr6, a mutant impaired in wound- and systemin-induced defense gene expression. Using a candidate gene approach based on genetic linkage, we demonstrate that spr6 is allelic to jai1-1, which is a loss-of-function allele of the tomato homolog of CORONATINE-INSENSITIVE1 (COI1), an F-box protein that is required for JA-signaled processes in Arabidopsis. We show several aspects of the spr6 mutant phenotype distinct from that of jai1-1. First, the responsiveness of spr6 plants to exogenous JA shows a dosage dependency, i.e. it is more sensitive to JA than jai1-1 while less sensitive to JA than the wild-type. Secondly, unlike the sterile jai1-1, the spr6 plant displays normal fertility and seed set and thus can be maintained as a pure line and does not require selection. Therefore, spr6 provides a valuable tool, which can complement the limitations of jai1-1, to study JA signaling in tomato. The gene identification process of Spr6 we described herein represents an example showing the convenience of a candidate gene approach, based on genetic linkage, to identify gene functions of genetic loci defined by tomato wound response mutants.  相似文献   

3.
In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.  相似文献   

4.
Tomato plants release volatile organic compounds (VOCs) following insect or mechanical damage. In this study, the constitutive and wound-induced emission levels of VOCs in suppressor of prosystemin-mediated responses2 (spr2) mutant plants, compromised in linolenic acid (LA) and jasmonic acid (JA) synthesis, and in 35S::prosystemin (35S::prosys) plants, having upregulated direct defence responses, were compared. The spr2 mutants produced constitutively lower levels of VOCs, which were nonetheless increased in response to (a)biotic damage, although at lower levels than wild-type (Wt) and 35S::prosys plants. No significant differences in VOC emissions were detected between the latter two genotypes, thereby suggesting that systemin does not regulate indirect defence responses, whereas differences in fatty acid composition in spr2 plants led to the predominant emission of saturated C6 volatiles in response to wounding. The expression of 1-deoxy-D-xylulose 5-phosphate synthase (DXS2), a key gene involved in VOC synthesis in the chloroplast, was only upregulated in Manduca sexta L.-damaged Wt and 35S::prosys plants. However, its expression was restored in spr2 plants by exogenous LA or JA, suggesting that abated VOC emissions in spr2 plants are correlated with lowered DXS2 expression. Bioassays with two different insects showed that adult females significantly preferred spr2 plants, indicating that lowered levels of VOCs in tomato influence plant selection by insects during oviposition.  相似文献   

5.
An 18-amino acid peptide in tomato leaves called systemin is a primary signal released at wound sites in response to herbivory that systemically signals the activation of defense genes throughout the plants. We report here the isolation of three hydroxyproline-rich glycopeptides from tomato leaves, of 20, 18, and 15 amino acids in length, that signal the activation of defense genes, similar to the activity of the systemin peptide. The three new peptides cause an alkalinization of suspension-cultured cells and induce the synthesis of defensive proteinase inhibitor proteins when supplied at fmol levels to young tomato plants through their cut stems. This suggests that they are part of the wound signaling of tomato plants that activates defense against herbivores and pathogens. Isolation of cDNAs coding for the tomato peptides revealed that they are all derived from the same pre-proprotein precursor that is systemically wound-inducible. The peptides are considered members of the functionally characterized systemin family of defense signals from plants that are synthesized both in wounded leaves and in distal, unwounded leaves in response to herbivory or other mechanical wounding. The precursor deduced from the cDNA exhibits a leader sequence, indicating that it is synthesized through the secretory pathway, where it is hydroxylated and glycosylated. The amino acid sequence of the precursor exhibited weak identity to the precursor of two hydroxyproline-rich defense signals recently found in tobacco, suggesting that the two pre-protein precursors have evolved from a common ancestral protein. The identification of hydroxyproline-rich glycoprotein systemins in tomato indicates that the initiation of wound signaling is more complex than previously thought and appears to involve multiple peptide signals.  相似文献   

6.
The wound response in tomato--role of jasmonic acid   总被引:27,自引:0,他引:27  
Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.  相似文献   

7.
8.
Gross N  Wasternack C  Köck M 《Phytochemistry》2004,65(10):1343-1350
Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.  相似文献   

9.
Wound- and systemin-inducible calmodulin gene expression in tomato leaves   总被引:10,自引:0,他引:10  
Using a calmodulin (CaM) cDNA as a probe in northern analyses, transgenic tomato plants that overexpress the prosystemin gene were found to express increased levels of CaM mRNA and protein in leaves compared to wild-type plants. These transgenic plants have been reported previously to express several wound-inducible defense-related genes in the absence of wounding. Calmodulin mRNA and protein levels were found to increase in leaves of young wild-type tomato plants after wounding, or treatment with systemin, methyl jasmonate, or linolenic acid. CaM mRNA appeared within 0.5 h after wounding or supplying young tomato plants with systemin, and peaked at 1 h. The timing of CaM gene expression is similar to the expression of the wound- or systemin-induced lipoxygenase and prosystemin genes, signal pathway genes whose expression have been reported to begin at 0.5–1 h after wounding and 1–2 h earlier than the genes coding for defensive proteinase inhibitor genes. The similarities in timing between the synthesis of CaM mRNA and the mRNAs for signal pathway components suggests that CaM gene expression may be associated with the signaling cascade that activates defensive genes in response to wounding.  相似文献   

10.
11.
The allene oxide cyclase (AOC)-catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. As shown by treatments with systemin and its inactive analog, and by analysis of 35S::prosysteminsense and 35S::prosysteminantisense plants, the AOC seems to be activated by systemin (and JA) leading to elevated formation of JA. Data are presented on the local wound response following activation of AOC and generation of JA, both in vascular bundles. The tissue-specific occurrence of AOC protein and generation of JA is kept upon wounding or other stresses, but is compromised in 35S::AOCsense plants, whereas 35S::AOCantisense plants exhibited residual AOC expression, a less than 10% rise in JA, and no detectable expression of wound response genes. The (i). activation of systemin-dependent AOC and JA biosynthesis occurring only upon substrate generation, (ii). the tissue-specific occurrence of AOC in vascular bundles, where the prosystemin gene is expressed, and (iii). the tissue-specific generation of JA suggest an amplification in the wound response of tomato leaves allowing local and rapid defense responses.  相似文献   

12.
Jasmonates as Signals in the Wound Response   总被引:35,自引:0,他引:35  
Plant responses to wounding and herbivore attack are orchestrated by complex signaling pathways that link the production of chemical and physical signals at the wound site to activation of gene expression and other cellular processes. The systemic nature of many wound-induced responses provides an attractive opportunity to study intercellular signaling pathways that operate over long distances within the plant. Genetic dissection of the wound-response pathway in tomato indicates that (1) systemin and its precursor protein, prosystemin, are upstream components of an intercellular signaling cascade that requires the biosynthesis and action of jasmonic acid (JA); and (2) physiological processes regulated by this pathway confer host resistance to a broad spectrum of plant invaders. Grafting experiments conducted with mutants defective in systemic wound signaling indicate that systemin functions at or near the wound site to trigger the production of JA, which in turn acts non-cell autonomously to promote systemic defense responses. The location of JA biosynthetic enzymes within the companion cell-sieve element complex of vascular bundles, together with the accumulation of JA in vascular tissues, support a role for jasmonates as phloem-mobile signals. The recent discovery of enzymes involved in the metabolism of JA to volatile methyl-JA and bioactive JA-amino acid conjugates has potential implications for the mechanism by which JA promotes wound signaling. Species-specific differences in the mechanism of wound signaling appear to reflect the way in which the wound-induced jasmonate pathway is regulated by other signals including systemin, cell wall-derived oligosaccharides, ethylene, and insect-derived elicitors. Adding to the complexity of the wound-induced jasmonate cascade are wound-signaling pathways that operate independently of JA.  相似文献   

13.
14.
15.
Previous studies have shown that an ethylene (ET)-dependent pathway is involved in the cell death signalling triggered by Alternaria alternata f. sp. lycopersici (AAL) toxin in detached tomato (Solanum lycopersicum) leaves. In this study, the role of jasmonic acid (JA) signalling in programmed cell death (PCD) induced by AAL toxin was analysed using a 35S::prosystemin transgenic line (35S::prosys), a JA-deficient mutant spr2, and a JA-insensitive mutant jai1. The results indicated that JA biosynthesis and signalling play a positive role in the AAL toxin-induced PCD process. In addition, treatment with the exogenous ET action inhibitor silver thiosulphate (STS) greatly suppressed necrotic lesions in 35S::prosys leaves, although 35S::prosys leaflets co-treated with AAL toxin and STS still have a significant high relative conductivity. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) markedly enhanced the sensitivity of spr2 and jai1 mutants to the toxin. However, compared with AAL toxin treatment alone, exogenous application of JA to the ET-insensitive mutant Never ripe (Nr) did not alter AAL toxin-induced cell death. In addition, the reduced ET-mediated gene expression in jai1 leaves was restored by co-treatment with ACC and AAL toxin. Furthermore, JA treatment restored the decreased expression of ET biosynthetic genes but not ET-responsive genes in the Nr mutant compared with the toxin treatment alone. Based on these results, it is proposed that both JA and ET promote the AAL toxin-induced cell death alone, and the JAI1 receptor-dependent JA pathway also acts upstream of ET biosynthesis in AAL toxin-triggered PCD.  相似文献   

16.
Nitric oxide negatively modulates wound signaling in tomato plants   总被引:24,自引:0,他引:24  
Synthesis of proteinase inhibitor I protein in response to wounding in leaves of excised tomato (Lycopersicon esculentum) plants was inhibited by NO donors sodium nitroprusside and S-nitroso-N-acetyl-penicillamine. The inhibition was reversed by supplying the plants with the NO scavenger 2-(4-carboxiphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. NO also blocked the hydrogen peroxide (H(2)O(2)) production and proteinase inhibitor synthesis that was induced by systemin, oligouronides, and jasmonic acid (JA). However, H(2)O(2) generated by glucose oxidase and glucose was not blocked by NO, nor was H(2)O(2)-induced proteinase inhibitor synthesis. Although the expression of proteinase inhibitor genes in response to JA was inhibited by NO, the expression of wound signaling-associated genes was not. The inhibition of wound-inducible H(2)O(2) generation and proteinase inhibitor gene expression by NO was not due to an increase in salicylic acid, which is known to inhibit the octadecanoid pathway. Instead, NO appears to be interacting directly with the signaling pathway downstream from JA synthesis, upstream of H(2)O(2) synthesis. The results suggest that NO may have a role in down-regulating the expression of wound-inducible defense genes during pathogenesis.  相似文献   

17.
In plants, herbivore attack elicits the rapid accumulation of jasmonic acid (JA) which results from the activation of constitutively expressed biosynthetic enzymes. The molecular mechanisms controlling the activation of JA biosynthesis remain largely unknown however new research has elucidated some of the early regulatory components involved in this process. Nicotiana attenuata plants, a wild tobacco species, responds to fatty acid amino acid conjuguates (FAC) elicitors in the oral secretion of its natural herbivore, Manduca sexta, by triggering specific defense and tolerance responses against it; all of the defense responses known to date require the amplification of the wound-induced JA increase. We recently demonstrated that this FAC-elicited JA burst requires an increased flux of free linolenic acid (18:3) likely originating from the activation of a plastidial glycerolipase (GLA1) which is activated by an abundant FAC found in insect oral secretions, N-linolenoyl-glutamate (18:3-Glu). The lack of accumulation of free 18:3 after elicitation suggests a tight physical association between GLA1 and LOX3 in N. attenuata leaves. In addition, the salicylate-induced protein kinase (SIPK) and the nonexpressor of PR-1 (NPR1) participate in this activation mechanism that controls the supply of 18:3. In contrast, the wound-induced protein kinase (WIPK) does not but instead regulates the conversion of 13(S)-hydroperoxy-18:3 into 12-oxo-phytodienoic acid (OPDA). These results open new perspectives on the complex network of signals and regulatory components inducing the JA biosynthetic pathway.Key words: jasmonic acid, lipase, lipoxygenase, wounding, plant-insect interactions, FAC  相似文献   

18.
We report here that disruption of function of the ω-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families.  相似文献   

19.
The final steps of jasmonic acid (JA) biosynthesis are thought to involve peroxisomal beta-oxidation, but this has not been directly demonstrated. The last and key step in fatty acid beta-oxidation is catalyzed by 3-ketoacyl-CoA thiolase (KAT) (EC 2.3.1.16). A mutant of Arabidopsis thaliana ecotype Landsberg erecta, which lacks a functional KAT protein and is defective in glyoxysomal fatty acid beta-oxidation has been reported. In this study, the mutant was found to accumulate reduced level of JA in both its wounded cotyledons and leaves, while only the cotyledons accumulate 3-oxo-2-(pent-2'-enyl)-cyclopentane-1-octanoic acid (OPC-8:0). This indicates that a defect in one of the thiolase isoenzymes impairs beta-oxidation of OPC-8:0 to JA. The mutant had sufficient thiolase activity for the synthesis of JA in the unwounded but not in the wounded tissues. Activities of the enzymes in the JA pathway that catalyze the steps, which precede beta-oxidation were not altered by the mutation in a thiolase protein. Thus, reduced levels of JA in the wounded tissues of the mutant were attributed to the defect in a thiolase protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号