首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The reintroduction of African elephants into fenced game reserves throughout South Africa has presented managers with several challenges. Although elephants are a natural part of southern African ecosystems, their confinement to fenced protected areas in South Africa has exacerbated their potential to impact their habitats negatively. However, many studies investigating the impact of elephants have failed to control for the effects of other browsers on the vegetative community. In this study, we used location data on an elephant herd to delineate high-use and low-use areas. This paired design allowed us to minimize confounding factors that could explain differences in the structure, diversity and utilization of woody species. We found little evidence to suggest elephant-mediated change in, or selection for, the structure or diversity of woody species; however, our results suggest that elephants may be altering the composition of species by preferentially using areas with higher canopy diversity and by enhancing sapling recruitment. Although stripping of bark was higher in high-use areas, there was no evidence of differential mortality of tree species. Therefore, in our study area, and over the current time scale, elephants are having a negligible impact on the vegetative community.  相似文献   

2.
    
Insect herbivores have the potential to consume large amounts of plant tissue in tropical forests, but insectivorous vertebrates effectively control their abundances, indirectly increasing plant fitness accordingly. Despite several studies already sought understanding of the top-down effects on arthropod community structure and herbivory, such studies of trophic cascades in old tropics are underrepresented, and little attention was paid to top-down forces in various habitats. Therefore, we examine how flying insectivorous vertebrates (birds and bats) impact arthropods and, consequently, affect herbivore damage of leaves in forest habitats in Papua New Guinea. In a 3-month long predator exclosure experiment conducted at four study sites across varying elevation and successional stage, we found that vertebrate predators reduced arthropod density by ∼52%. In addition, vertebrate predators decreased the mean body size of arthropods by 26% in leaf chewers and 47% in non-herbivorous arthropods but had only a small effect on mesopredators and sap suckers. Overall, the exclusion of vertebrate predators resulted in a ~ 41% increase in leaf damage. Our results, across different types of tropical forests in Papua New Guinea, demonstrate that flying vertebrate insectivores have a crucial impact on plant biomass, create a selective pressure on larger and non-predatory prey individuals and they prey partition with mesopredators.  相似文献   

3.
  总被引:1,自引:0,他引:1  
Comparative physiology applies methods established in domestic animal science to a wider variety of species. This can lead to improved insight into evolutionary adaptations of domestic animals, by putting domestic species into a broader context. Examples include the variety of responses to seasonally fluctuating environments, different adaptations to heat and drought, and in particular adaptations to herbivory and various herbivore niches. Herbivores generally face the challenge that a high food intake compromises digestive efficiency (by reducing ingesta retention time and time available for selective feeding and for food comminution), and a variety of digestive strategies have evolved in response. Ruminants are very successful herbivores. They benefit from potential advantages of a forestomach without being constrained in their food intake as much as other foregut fermenters, because of their peculiar reticuloruminal sorting mechanism that retains food requiring further digestion but clears the forestomach of already digested material; the same mechanism also optimises food comminution. Wild ruminants vary widely in the degree to which their rumen contents 'stratify', with little stratification in 'moose-type' ruminants (which are mostly restricted to a browse niche) and a high degree of stratification into gas, particle and fluid layers in 'cattle-type' ruminants (which are more flexible as intermediate feeders and grazers). Yet all ruminants uniformly achieve efficient selective particle retention, suggesting that functions other than particle retention played an important role in the evolution of stratification-enhancing adaptations. One interesting emerging hypothesis is that the high fluid turnover observed in 'cattle-type' ruminants - which is a prerequisite for stratification - is an adaptation that not only leads to a shift of the sorting mechanism from the reticulum to the whole reticulo-rumen, but also optimises the harvest of microbial protein from the forestomach. Although potential benefits of this adaptation have not been quantified, the evidence for convergent evolution toward stratification suggests that they must be substantial. In modern production systems, the main way in which humans influence the efficiency of energy uptake is by manipulating diet quality. Selective breeding for conversion efficiency has resulted in notable differences between wild and domestic animals. With increased knowledge on the relevance of individual factors, that is fluid throughput through the reticulo-rumen, more specific selection parameters for breeding could be defined to increase productivity of domestic ruminants by continuing certain evolutionary trajectories.  相似文献   

4.
    
《Current biology : CB》2020,30(1):158-168.e4
  相似文献   

5.
Differences in size-related ecology and behaviour between vertebrate and invertebrate herbivores lead to differences in the rates, tissue specificity, and spatial distribution of their damage, as well as in their indirect effects. As a result, many features of tolerance to herbivory by these groups also may differ. Tolerating vertebrate herbivory may demand the ability to tolerate sporadic non-specific impacts; this may be achieved by broad responses promoting regrowth and resource acquisition. In contrast, the diversity of different types of invertebrate damage seems likely to demand a correspondingly great variety of responses. These conclusions suggest that tolerance to invertebrates may involve a broader set of responses than tolerance to vertebrates; conversely, the greater specificity of these responses may make it more difficult for arthropod-tolerant plants to achieve cross-tolerance to other types of damage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Plants use volatile organic compounds to attract invertebratepredators and parasitoids of their herbivore pests. Recently,it has been suggested that plants, either through visual orolfactory cues, may also "cry for help" from vertebrate predatorssuch as birds. We show that in a laboratory choice test, passerinebirds (Parus major and Cyanistes caeruleus) were attracted tothe intact branches of trees (Betula pendula) suffering fromfoliar damage caused by herbivore larvae (Epirrita autumnata)in nontest branches. Species, age, or sex of the experimentalbird or lighting (ultraviolet [UV] or non-UV) did not affectthe preference. However, the birds made a clear choice betweenthe treatments when the trees came from a forest patch receivingmore sunlight, whereas no obvious choice was observed when thetrees came from a shadier forest patch. Results of the choicetest were supported by the spectral reflectance of tree leaves.In the sunnier forest patch, control trees reflected more visiblelight than the herbivore trees, whereas no such difference wasfound in the shadier forest patch trees. We suggest that avianpredators use their vision within visible wavelengths to findinsect-rich plants even when they do not see the prey itemsor damaged leaves.  相似文献   

7.
    
Although the use of mineral licks by diverse Amazonian birds and mammals is well‐known, the ultimate motivation for such behavior remains unclear. As aerosol deposition of salts declines with distance from oceanic sources, lick visitation in the western Amazon can be explained by demand for sodium, given the low concentration of this micronutrient in the plant tissues consumed by these taxa. Sodium limitation also influences ant foraging behavior, and impinges on ecosystem rates of carbon cycling. The biogeographical context of sodium availability has been largely overlooked, but has substantial pantropical implications for herbivore and decomposer performance in inland rain forests. Abstract in Spanish is available in the online version of this article.  相似文献   

8.
9.
This study examined the effects of insect herbivory on growth and mortality of seedlings of a mid- successional rainforest tree, Alphitonia whitei Braid. Two experiments were conducted in which seedlings were exposed to 0% and 50% natural defoliation by insect herbivores and placed in light gaps in simple notophyll vine forest at Paluma, near Townsville, North Queensland. In the first experiment, insect herbivory significantly increased mortality of 2-month-old seedlings. Smaller seedlings had significantly greater mortality rates than larger seedlings, irrespective of herbivory. A significantly greater proportion of smaller seedlings died from being smothered by fallen leaves and soil as a result of digging by vertebrates than for larger seedlings. In the second experiment, the effects of seedling age were examined by comparing 2-month and 4-month-old seedlings. Mortality rates were significantly influenced by seedling age, with eight times greater survival of older seedlings than of younger seedlings. Although insect herbivory was correlated with a significant decrease in shoot mass and a significant increase in root:shoot ratio, there was no effect of insect herbivory on seedling survival in the second experiment. Thus, mortality rates were greater for seedlings if they were young or small (which indirectly results from insect herbivory), because small, young seedlings were more susceptibile to other mortality factors, such as burial by fallen debris and digging by vertebrates.  相似文献   

10.
    
1. Competition between herbivores often plays an important role in population ecology and appears strongest when densities are high or plant production is low. Phytophagous insects are often highly abundant, but relatively few experiments have examined competition between vertebrates and phytophagous insects. 2. In grassland systems worldwide, grasshoppers are often the dominant phytophagous insect, and livestock grazing is a dominant land use. For this study, a novel experiment was conducted examining competition between vertebrates and invertebrates, where both grasshopper densities and sheep grazing were manipulated inside 10‐m2 caged mesocosms during a grasshopper outbreak. We examined how grasshopper densities and the timing of vertebrate herbivory affected grasshopper densities, if the effects of vertebrates on survival and reproduction changed with grasshopper density, and how a naturally occurring grasshopper outbreak affected grasshopper populations in the following year. 3. Densities of grasshoppers at the site peaked at 130 m–2. Food‐limited competition was stronger in treatments with higher grasshopper densities and repeated or late livestock herbivory, leading to reduced survival, femur length, and functional ovarioles, a measure of future reproduction. Strong food‐limited density‐dependent reproduction and survival led to reduced hatching densities in 2001. 4. As competition was typically stronger with high grasshopper densities than with livestock grazing, competition from vertebrates could be relatively less important for phytophagous insect population dynamics during outbreaks. The experiment provides insights into how competition between insect and vertebrate herbivores influences insect population dynamics, and indicates that severe outbreaks can rapidly subside with strong competition from vertebrate and insect herbivores.  相似文献   

11.
对成都动物园2005年和2008年出生长颈鹿幼仔在母兽哺乳情况下的1月龄内幼仔行为进行了观察和分析.发现幼长颈鹿的主要行为有卧、走、站、吃奶、跑等,其中卧和站的行为分别占全天时间的61.7%和32.3%;幼长颈鹿在10 d左右开始学习采食青草,4周龄时明显能吃到一些青草.  相似文献   

12.
    
Using an exclosure experiment in managed woodland in eastern England, we examined species and guild responses to vegetation growth and its modification by deer herbivory, contrasting winter and the breeding season over 4 years. Species and guild responses, in terms of seasonal presence recorded by multiple point counts, were examined using generalized linear mixed models. Several guilds or migrant species responded positively to deer exclusion and none responded negatively. The shrub‐layer foraging guild was recorded less frequently in older and browsed vegetation, in both winter and spring. Exclusion of deer also increased the occurrence of ground‐foraging species in both seasons, although these species showed no strong response to vegetation age. The canopy‐foraging guild was unaffected by deer exclusion or vegetation age in either season. There was seasonal variation in the responses of some individual resident species, including a significantly lower occurrence of Eurasian Wren Troglodytes troglodytes and European Robin Erithacus rubecula in browsed vegetation in winter, but no effect of browsing on those species in spring. Ordinations of bird assemblage compositions also revealed seasonal differences in response to gradients of vegetation structure generated by canopy‐closure and exclusion of deer. Positive impacts of deer exclusion in winter are probably linked to reduced thermal cover and predator protection afforded by browsed vegetation, whereas species that responded positively in spring were also dependent on a dense understorey for nesting. The effects on birds of vegetation development and its modification by herbivores extend beyond breeding assemblages, with different mechanisms implicated and different species affected in winter.  相似文献   

13.
The study of the central nervous system in extinct vertebrates is discussed. Historical development of the nervous system is restricted to a few morphological patterns. The foundation of structural conservatism of the nervous system is provided by the multifunctional character of any adaptive changes in the brain of vertebrates. The functional structural features allow the use of the nervous system for the resolution of some difficult questions of vertebrate evolution.  相似文献   

14.
  总被引:1,自引:1,他引:1  
We examined whether terrestrial vertebrates affected the arbuscular mycorrhizal fungal spore communities and mycorrhizal inoculum potential (MIP) of a tropical rain forest soil by comparing plots where terrestrial vertebrates had been excluded for 3 years to adjacent control plots. We extracted spores from soil using sucrose density gradient centrifugation and assayed MIP by growing seedlings of maize ( Zea mays ) and a rain forest tree ( Flindersia brayleana ) in intact soil cores from exclosure and control plots. Control plots had significantly higher spore abundance, species richness and diversity than exclosures. Spore community composition also differed significantly between exclosure and control plots. Seedlings of both plant species grown in control cores had significantly higher arbuscular-mycorrhizal colonization than those grown in exclosure cores. This study suggests that loss of vertebrates could alter rates of mycorrhizal colonization with consequences for community and ecosystem properties.  相似文献   

15.
    
Contrafreeloading is an intriguing phenomenon in which animals will work to obtain resources, such as food, when the same resource is simultaneously freely available. Multiple hypotheses exist for why animals might choose to contrafreeload. In this study, we assessed preferences for contrafreeloading in giraffe at the Bronx Zoo to determine whether they actually preferred to contrafreeload or were simply demonstrating a willingness to contrafreeload. Food was presented in a range of distributions between an easily accessed feeding device and a more challenging one and the giraffes’ feeding behavior at these two types of feeding devices was recorded. As the experiments progressed, more giraffe used these more challenging feeders. There was significant individual variation in the expression of preference for contrafreeloading and willingness to contrafreeload. Individual, phase of the experiment, and an interaction between these factors were significant predictors of challenge feeder use. Three foraging strategies emerged among the giraffe that we termed “freeloaders,” “contrafreeloaders,” and “opportunists.” The results of this study demonstrate that multiple indices of preference are necessary when assessing contrafreeloading behavior, and that giraffe are affected to different degrees by the factors that stimulate contrafreeloading. These results may shed light on why different individuals use complex feeding enrichment devices to varying extents.  相似文献   

16.
    
The 5'-untranslated region (5'-UTR) of the 'Giraffe' strain of pestivirus was sequenced for comparison with those of other pestiviruses from cattle, sheep, goats, and swine. A phylogenetic tree constructed with these strains suggested that the 'Giraffe' strain was allocated to a new taxon. This observation was also confirmed by a newly proposed method based on palindromic nucleotide substitutions (PNS) at the three variable regions in the 5'-UTR. Other reported pestivirus strains isolated from deer were assigned as bovine viral disease virus (BVDV)-1 according to the PNS as well as phylogenetic analysis, suggesting that BVDV-1 strains can cross-infect deer as well as cattle, sheep, goats, and swine, and that wild deer may serve as a reservoir of BVDV-1. We also identified the genovar of a deer isolate, SH9/11, as BVDV-1c by the PNS method.  相似文献   

17.
Observations on the behavioral development of two okapi calves and one giraffe calf were made at Brookfield Zoo. The following behaviors were monitored for 4 to 6 mo after birth; nursing duration and nursing attempts, mother-infant distance, bunting the mother's udder, lying, moving, maternal grooming, mother and infant autogrooming, object licking, tail chewing, and contact by others in the herd. Behaviors in both species showed oscillating patterns with high levels of mother-infant contact behaviors at 3–4 wk, 9–11 wk, and 14–15 wk in okapis. Giraffe infants showed similar oscillations with high periods of contact about 2–5 wk later than those in okapis. Other behaviors oscillated in concert with these, with specific correlations occurring between nursing behaviors and grooming behaviors. A main difference between okapi and giraffe development centered around maternal motivation during the high contact (regressive) periods. In okapis, after 10–12 wk there was a low rate of nursing success, whereas in giraffes the percentage of success in nursing rose with later behavioral oscillations. The regressive periods became conflict periods in okapis, whereas in the giraffe, the mother initiated the periods. This difference was in accordance with the unique strategy of infant rearing in wild giraffes in which there is an extended “hider” period when older calves are left together in shaded areas with an adult sentry. Field studies also indicated probable oscillations of mother-infant contact and a prolonged period of the mother initiating contact with her calf.  相似文献   

18.
    
We evaluated temporal patterns of seedling survival of eight Neotropical tree species generated under multiple abiotic and biotic hazards (vertebrates, disease, litterfall) in the forest understory on Barro Colorado Island, Panama. Seedlings were transplanted at first leaf expansion in low densities along a 6-km transect and damage and mortality were recorded for 1 yr. We also planted and monitored small and large artificial seedlings to estimate physical disturbance regimes. During 0–2 mo after transplant, vertebrate consumers of reserve cotyledons caused high mortality of real seedlings, but little damage to artificial seedlings. On real seedlings after 2 mo, disease became an important agent of mortality, despite a decrease in overall mortality rates. Damage by litterfall remained relatively low during the 1-yr study period. Survival ranks among species showed ontogenetic shifts over time, as species changed susceptibility to the mortality agents. Survival after 2 mo was positively correlated with stem toughness, not because species with tough stems were less likely to receive mechanical damage, but because they survived better after receiving mechanical damage. Within each transplant station, artificial seedlings were not good predictors of litterfall damage experienced by real seedlings. Forest-wide litterfall damage level, however, was similar for both real and artificial seedlings ( ca 10%/yr), a moderate level compared to other tropical forests. In conclusion, species traits including biomechanical traits interact to create complex temporal patterns of first year seedling survival, resulting in ontogenetic shifts that largely reflect changes in the relative importance of vertebrate consumers relative to other hazards.  相似文献   

19.
  总被引:1,自引:0,他引:1  
Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate‐related disturbance.  相似文献   

20.
    
The objectives of the present research were to conduct a survey to investigate the health history and feeding practices of giraffe in captivity in North America and to obtain samples of hay, concentrate, browse, urine, and serum to compare across zoos, possible factors relating to the development of urolithiasis. Forty‐one out of 98 institutions contacted responded, representing 218 giraffe. All responding zoos fed concentrate and alfalfa hay was the primary forage. Sixty‐five percent of zoos fed browse and 43 different species of browse were listed. Six zoos reported a history of urolithiasis, seven reported wasting syndrome, and 10 reported sudden death. The median daily amount (as fed) of concentrate and hay offered were 5.45 kg (range of 2.73–9.55 kg) and 6.82 kg (range of 2.53–12.50 kg), respectively. The concentrate:hay ratio of the offered diet ranged from 0.22 to 3.47 with a median value of 0.79. Forty‐three percent of the institutions offered a ratio greater than 1:1. Samples of concentrate and hay (six zoos), serum (five zoos), and urine (seven zoos) were obtained for chemical analyses. Analyzed nutrient content of the consumed diet, measured by weighing feed and orts for three consecutive days, met recommendations for giraffe, but was excessive for crude protein and P. Concentrate:hay and serum P were positively correlated (r=0.72; P<0.05). High dietary P content and a high level of concentrate relative to hay may be contributing factors to urolith formation and warrant further investigation. Zoo Biol 29:457–469, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号