首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intracellular calcium ion ([Ca2+]i) transients were measured in voltage-clamped rat cardiac myocytes with fura-2 or furaptra to quantitate rapid changes in [Ca2+]i. Patch electrode solutions contained the K+ salt of fura-2 (50 microM) or furaptra (300 microM). With identical experimental conditions, peak amplitude of stimulated [Ca2+]i transients in furaptra-loaded myocytes was 4- to 6-fold greater than that in fura-2-loaded cells. To determine the reason for this discrepancy, intracellular fura-2 Ca2+ buffering, kinetics of Ca2+ binding, and optical properties were examined. Decreasing cellular fura-2 concentration by lowering electrode fura-2 concentration 5-fold, decreased the difference between the amplitudes of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes by twofold. Thus, fura-2 buffers [Ca2+]i under these conditions; however, Ca2+ buffering is not the only factor that explains the different amplitudes of the [Ca2+]i transients measured with these indicators. From the temporal comparison of the [Ca2+]i transients measured with fura-2 and furaptra, the apparent reverse rate constant for Ca2+ binding of fura-2 was at least 65s-1, much faster than previously reported in skeletal muscle fibers. These binding kinetics do not explain the difference in the size of the [Ca2+]i transients reported by fura-2 and furaptra. Parameters for fura-2 calibration, Rmin, Rmax, and beta, were obtained in salt solutions (in vitro) and in myocytes exposed to the Ca2+ ionophore, 4-Br A23187, in EGTA-buffered solutions (in situ). Calibration of fura-2 fluorescence signals with these in situ parameters yielded [Ca2+]i transients whose peak amplitude was 50-100% larger than those calculated with in vitro parameters. Thus, in vitro calibration of fura-2 fluorescence significantly underestimates the amplitude of the [Ca2+]i transient. These data suggest that the difference in amplitude of [Ca2+]i transients in fura-2 and furaptra-loaded myocytes is due, in part, to Ca2+ buffering by fura-2 and use of in vitro calibration parameters.  相似文献   

2.
Furaptra (Raju, B., E. Murphy, L. A. Levy, R. D. Hall, and R. E. London. 1989. Am. J. Physiol. 256:C540-C548) is a "tri-carboxylate" fluorescent indicator with a chromophore group similar to that of fura-2 (Grynkiewicz, G., M. Poenie, and R. Y. Tsien. 1985. J. Biol. Chem. 260:3440-3450). In vitro calibrations indicate that furaptra reacts with Ca2+ and Mg2+ with 1:1 stoichiometry, with dissociation constants of 44 microM and 5.3 mM, respectively (16-17 degrees C; ionic strength, 0.15 M; pH, 7.0). Thus, in a frog skeletal muscle fiber stimulated electrically, the indicator is expected to respond to the change in myoplasmic free [Ca2+] (delta[Ca2+]) with little interference from changes in myoplasmic free [Mg2+]. The apparent longitudinal diffusion constant of furaptra in myoplasm was found to be 0.68 (+/- 0.02, SEM) x 10(-6) cm2 s-1 (16-16.5 degrees C), a value which suggests that about half of the indicator was bound to myoplasmic constituents of large molecular weight. Muscle membranes (surface and/or transverse-tubular) appear to have some permeability to furaptra, as the total quantity of indicator contained within a fiber decreased after injection; the average time constant of the loss was 302 (+/- 145, SEM) min. In fibers containing less than 0.5 mM furaptra and stimulated by a single action potential, the calibrated peak value of delta[Ca2+] averaged 5.1 (+/- 0.3, SEM) microM. This value is about half that reported in the preceding paper (9.4 microM; Konishi, M., and S. M. Baylor. 1991. J. Gen. Physiol. 97:245-270) for fibers injected with purpurate-diacetic acid (PDAA). The latter difference may be explained, at least in part, by the likelihood that the effective dissociation constant of furaptra for Ca2+ is larger in vivo than in vitro, owing to the binding of the indicator to myoplasmic constituents. The time course of furaptra's delta[Ca2+], with average values (+/- SEM) for time to peak and half-width of 6.3 (+/- 0.1) and 9.5 (+/- 0.4) ms, respectively, is very similar to that of delta[Ca2+] recorded with PDAA. Since furaptra's delta[Ca2+] can be recorded at a single excitation wavelength (e.g., 420 nm) with little interference from fiber intrinsic changes, movement artifacts, or delta[Mg2+], furaptra represents a useful myoplasmic Ca2+ indicator, with properties complementary to those of other available indicators.  相似文献   

3.
The fluorescent Mg(2+) indicator furaptra (mag-fura-2) was introduced into single ventricular myocytes by incubation with its acetoxy-methyl ester form. The ratio of furaptra's fluorescence intensity at 382 and 350 nm was used to estimate the apparent cytoplasmic [Mg(2+)] ([Mg(2+)](i)). In Ca(2+)-free extracellular conditions (0.1 mM EGTA) at 25 degrees C, [Mg(2+)](i) averaged 0.842 +/- 0.019 mM. After the cells were loaded with Mg(2+) by exposure to high extracellular [Mg(2+)] ([Mg(2+)](o)), reduction of [Mg(2+)](o) to 1 mM (in the presence of extracellular Na(+)) induced a decrease in [Mg(2+)](i). The rate of decrease in [Mg(2+)](i) was higher at higher [Mg(2+)](i), whereas raising [Mg(2+)](o) slowed the decrease in [Mg(2+)](i) with 50% reduction of the rate at approximately 10 mM [Mg(2+)](o). Because a part of the furaptra molecules were likely trapped inside intracellular organelles, we assessed possible contribution of the indicator fluorescence emitted from the organelles. When the cell membranes of furaptra-loaded myocytes were permeabilized with saponin (25 microg/ml for 5 min), furaptra fluorescence intensity at 350-nm excitation decreased to 22%; thus approximately 78% of furaptra fluorescence appeared to represent cytoplasmic [Mg(2+)] ([Mg(2+)](c)), whereas the residual 22% likely represented [Mg(2+)] in organelles (primarily mitochondria as revealed by fluorescence imaging). [Mg(2+)] calibrated from the residual furaptra fluorescence ([Mg(2+)](r)) was 0.6-0.7 mM in bathing solution [Mg(2+)] (i.e., [Mg(2+)](c) of the skinned myocytes) of either 0.8 mM or 4.0 mM, suggesting that [Mg(2+)](r) was lower than and virtually insensitive to [Mg(2+)](c). We therefore corrected furaptra fluorescence signals measured in intact myocytes for this insensitive fraction of fluorescence to estimate [Mg(2+)](c). In addition, by utilizing concentration and dissociation constant values of known cytoplasmic Mg(2+) buffers, we calculated changes in total Mg concentration to obtain quantitative information on Mg(2+) flux across the cell membrane. The calculations indicate that, in the presence of extracellular Na(+), Mg(2+) efflux is markedly activated by [Mg(2+)](c) above the normal basal level (approximately 0.9 mM), with a half-maximal activation of approximately 1.9 mM [Mg(2+)](c). We conclude that [Mg(2+)](c) is tightly regulated by an Mg(2+) efflux that is dependent on extracellular [Na(+)].  相似文献   

4.
A series of iminocoumarin-based fluorescent Ca2+ indicators were synthesized and the spectral profiles of their free and Ca2+ bound forms were studied. The newly-synthesized compounds incorporate the Ca2+ chelating structure of BAPTA. The chromophore moieties are iminocoumarins substituted at the 3-position with benzothiazolyl, benzoxazolyl and benzimidazolyl groups. These compounds are excited with visible light and their Ca2+ dissociation constants range from 5.4 to 27.5 microM. Fluorescence spectra studies of these probes indicated a clear shift in their excitation wavelength maxima upon Ca2+ binding along with changes in fluorescence intensity that enable the compounds to be used as low Ca2+ affinity, visible excitable probes.  相似文献   

5.
The fluorescent calcium indicator, calcein, has been used as a high-affinity indicator of Ca2+ in the aqueous phase at physiological pH in the study of high-affinity calcium binding to sarcoplasmic reticulum (SR). The binding constant of the indicator at physiological pH is 10(3)-10(4) M-1 and increases with increasing pH. The binding mechanism of the indicator with Ca2+ and Mg2+ is described. Application of calcein as an aqueous indicator of Ca2+ binding to the SR at room temperature has revealed two classes of binding sites: one with high capacity and low affinity (ca. 820 nmol/mg protein, Kd = 1.9 mM), and another with low capacity and higher affinity (ca. 35 nmol/mg protein, Kd = 17.5 micronM). The divalent cation specificity of the low-affinity site is low and Ca2+/Mg2+ specificity of the high-affinity site is high. Quantitative studies of the bindings indicate that the high-affinity site residues in the Ca2+ ATPase (carrier) protein and represents complexation in the active site of the carrier and that the low-affinity site residues in the nonspecific acidic binding proteins. The contribution of Donnan equilibrium effects to the measured binding is shown to be insignificant. Stopped flow kinetic studies of Ca2+ passive binding with calcein and arsenazo III dyes have demonstrated that the binding to high-affinity site is very fast and that the overall binding reaction with the low-affinity site is slow, with a time course of about 4 s. Our analysis has shown that at least part of the low-affinity acidic proteins are within the SR matrix and that Ca2+ can reach them only by transversing the membrane via the Ca2+ carrier (Ca2+ ATPase). A model of the SR is proposed that accounts for several functional properties of the organelle in terms of its known protein composition and topological organization.  相似文献   

6.
7.
Two new potential near-membrane iminocoumarin-based fluorescent Ca(2+) indicators were synthesized and the spectral profiles of their free and Ca(2+) bound forms were studied. The probes incorporate in their BAPTA-related structures, the 3-(benzimidazolyl)iminocoumarin or the 3-(benzothiazolyl)iminocoumarin moiety, substituted at the imino nitrogen with an n-dodecyl lipophilic chain. The compounds are excited with visible light and have Ca(2+) dissociation constant values of 5.50 and 4.49 microM, respectively, the highest reported to date in the literature. Fluorescence spectra studies indicated a clear shift in their excitation wavelength maxima upon Ca(2+) binding along with changes in fluorescence intensity that enable the compounds to be used as ratiometric near-membrane, low Ca(2+) affinity probes.  相似文献   

8.
9.
The properties of the dyad cleft can in principle significantly impact excitation-contraction coupling, but these properties are not easily amenable to experimental investigation. We simultaneously measured the time course of the rise in integrated Ca current (ICa) and the rise in concentration of fura 2 with Ca bound ([Ca-fura 2]) with high time resolution in rat myocytes for conditions under which Ca entry is only via L-type Ca channels and sarcoplasmic reticulum (SR) Ca release is blocked, and compared these measurements with predictions from a finite-element model of cellular Ca diffusion. We found that 1) the time course of the rise of [Ca-fura 2] follows the time course of integrated ICa plus a brief delay (1.36 ± 0.43 ms, n = 6 cells); 2) from the model, high-affinity Ca binding sites in the dyad cleft at the level previously envisioned would result in a much greater delay (=" BORDER="0">3 ms) and are therefore unlikely to be present at that level; 3) including ATP in the model promoted Ca efflux from the dyad cleft by a factor of 1.57 when low-affinity cleft Ca binding sites were present; 4) the data could only be fit to the model if myofibrillar troponin C (TnC) Ca binding were low affinity (4.56 µM), like that of soluble troponin C, instead of the high-affinity value usually used (0.38 µM). In a "good model," the rate constants for Ca binding and dissociation were 0.375 times the values for soluble TnC; and 5) consequently, intracellular Ca buffering at the rise of the Ca transient is inferred to be low. excitation-contraction coupling; adenosine triphosphate; fura 2; modeling; fuzzy space  相似文献   

10.
目的:采用共聚焦显微镜快速二维扫描方式和线扫描方式记录心肌胞内钙瞬变,并分析其优缺点。方法:标本为急性分离的SD大鼠心肌单细胞,胞内钙信号由钙指示剂fluo4-AM标记,其变化由共聚显微镜(LSM510META系统)记录。钙瞬变由局部场刺激诱发,刺激器和共聚焦成像系统之间通过触发连接同步工作。结果:快速二维扫描方式可在二维平面上反映全细胞范围内钙瞬变的动态过程,空间信息较全面;特别地,当心肌细胞由于药物或病理状态的改变而出现胞内钙稳态失衡时,快速二维扫描的结果更有利于了解胞内钙变化;其结果可制成动画,真实而直观地再现心肌细胞胞内钙瞬变的动态过程。线扫描方式的时间分辨率较高,也有一定的空间分辨率,可反映钙瞬变的时空特征,并可分析细胞收缩的情况。二种扫描方式所得的结果在实质上是一致的,但各有其侧重点和优缺点,在反映心肌细胞功能状态方面具有互补作用。结论:两种扫描方式所得的结果综合起来更有利于对胞内钙信号变化的特征和意义进行正确解读。  相似文献   

11.
Isolated rat ventricular cardiac myocytes loaded with the fluorescent calcium indicator fura2 showed significant changes in intracellular calcium concentrations upon exposure to greater than 1 microM ATP (EC50 = 7.4 +/- 1.3 microM, n = 4, SE), suggesting that extracellular ATP may have an important influence on myocardial contractility. The response was found to be highly ATP specific and required extracellular calcium. Furthermore, 30 s pretreatment of the cells with 0.2-1 microM norepinephrine decreased the concentration of ATP required for the Ca2+ transient, shifting the EC50 for ATP to 1.7 +/- 0.1 microM (n = 3, SE). beta-Propranolol (a beta 1-receptor antagonist) prevented potentiation, whereas phentolamine (an alpha 1-receptor antagonist) did not, indicating that regulation is through the beta 1-adrenergic receptor. ATP and norepinephrine released locally from sympathetic neurons may act in concert through the ATP and beta 1-adrenergic receptors to regulate myocardial calcium homeostasis.  相似文献   

12.
A new fluorescent intracellular pH indicator is described ("quene 1") which is related to the tetracarboxylate Ca2+ indicator based on the quinoline fluorophor ("quin 2"). Quene 1 has excitation and emission maxima at 390 and 530 nm, respectively, and shows a 30-fold increase in fluorescence between pH 5 and 9 with a pK alpha of 7.3. The fluorescence is insensitive to Ca2+ and Mg2+ at free concentrations up to 10(-4) M and to the proportions of Na+ and K+ at total concentrations of Na+ and K+ from 100 to 200 mM. The indicator is loaded into thymocytes using the tetraacetoxymethyl ester derivative which is hydrolyzed in the cells to give the tetracarboxylate anion. Intracellular pH can be measured at intracellular quene 1 concentrations of approximately 0.1 mM and quene 1 does not perturb glycolysis or the ATP level in resting cells at concentrations up to 0.8 mM. The intracellular pH of mouse thymocytes indicated by quene 1 is 7.15 +/- 0.04 and it is insensitive to the concentration of Ca2+ or Mg2+ in the extracellular medium. The intracellular pH decreased when the pH of the medium was lowered by addition of HCl, but was insensitive to NaOH at extracellular pH values up to 8.0. Rapid transient changes in intracellular pH are induced by NH4Cl, NaCO2CH3, or HCO3-/CO2. The thymocytes showed no early changes (within 30 min) in intracellular pH in response to mitogenic concentrations of lectins or 4 beta-phorbol-12-myristate-13-acetate.  相似文献   

13.
The fluorescent Mg2+/Ca2+ indicator, furaptra, was injected into single frog skeletal muscle fibers, and the indicator's fluorescence signals were measured and analyzed with particular interest in the free Mg2+ concentration ([Mg2+]) in resting muscle. Based on the fluorescence excitation spectrum of furaptra, the calibrated myoplasmic [Mg2+] level averaged 0.54 mM, if the value of dissociation constant (KD) for Mg2+ obtained in vitro (5.5 mM) was used. However, if the indicator reacts with Mg2+ with a two-fold larger KD in myoplasm, as previously suggested for the furaptra-Ca2+ reaction (M. Konishi, S. Hollingworth, A.B. Harkins, S.M. Baylor. 1991. J. Gen. Physiol. 97:271-301), the calculated [Mg2+] would average 1.1 mM. Thus, the value 1.1 mM probably represents the best estimate from furaptra of [Mg2+] in resting muscle fibers. Extracellular perfusion of muscle fibers with high Mg2+ concentration solution or low Na+ concentration solution did not cause any detectable changes in the [Mg2+]-related furaptra fluorescence within 4 min. The results suggest that the myoplasmic [Mg2+] is highly regulated near the resting level of 1 mM, and that changes only occur with a very slow time course.  相似文献   

14.
15.
It is of paramount importance to investigate the relation between the time-dependent change in intracellular Ca2+ concentration ([Ca2+]i) (Ca2+ transients) and the mechanical activity of isolated single myocytes to understand the regulatory mechanisms of heart function. However, because of technical difficulties in performing mechanical measurements with single myocytes, the simultaneous recording of Ca2+ transients and mechanical activity has mainly been performed with multicellular cardiac preparations that give conflicting results concerning Ca2+ transients during isometric twitches and during twitches with unloaded shortening. In the present study, we coupled intracellular Ca2+ measurement optics with a force measurement system using carbon fibers to examine the relation between Ca2+ transients and the mechanical activity of rat single ventricular myocytes over a wide range of load. To minimize the possible load dependence of sarcoplasmic reticulum Ca2+ loading, contraction mode was switched at every twitch from unloaded shortening to isometric contraction. During a twitch with unloaded shortening, the Ca2+ transients exhibited a higher peak and a higher rate of decay than transients during an isometric twitch. Similarly, when we changed the contraction mode in every pair of twitches, Ca2+ transients were dependent only on the mode of contraction. Mechanical uncoupling with 2,3-butanedione monoxime abolished this dependence on the mode of contraction. Our results suggest that Ca2+ transients reflect the affinity of troponin C for Ca2+, which is influenced by the change in strain on the thin filament but not by the length change per se.  相似文献   

16.
17.
Phospholemman (PLM) expression was increased in rat hearts after myocardial infarction (MI). Overexpression of PLM in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca(2+) concentration ([Ca(2+)](i)) homeostasis in a manner similar to that observed in post-MI myocytes. In this study, we tested whether PLM downregulation in normal adult rat myocytes resulted in contractility and [Ca(2+)](i) transient changes opposite to those observed in post-MI myocytes. Compared with control myocytes infected with adenovirus (Adv) expressing green fluorescent protein (GFP) alone, myocytes infected with Adv expressing both GFP and rat antisense PLM (rASPLM) had 23% less PLM protein (P < 0.012) at 3 days, but no differences were found in sarcoplasmic reticulum (SR) Ca(2+)-ATPase, Na(+)/Ca(2+) exchanger (NCX1), Na(+)-K(+)-ATPase, and calsequestrin levels. SR Ca(2+) uptake and whole cell capacitance were not affected by rASPLM treatment. Relaxation from caffeine-induced contracture was faster, and NCX1 current amplitudes were higher in rASPLM myocytes, indicating that PLM downregulation enhanced NCX1 activity. In native rat cardiac myocytes, coimmunoprecipitation experiments indicated an association of PLM with NCX1. At 0.6 mM [Ca(2+)](o), rASPLM myocytes had significantly (P < 0.003) lower contraction and [Ca(2+)](i) transient amplitudes than control GFP myocytes. At 5 mM [Ca(2+)](o), both contraction and [Ca(2+)](i) transient amplitudes were higher in rASPLM myocytes. This pattern of contractile and [Ca(2+)](i) transient behavior in rASPLM myocytes was opposite to that observed in post-MI rat myocytes. We conclude that downregulation of PLM in normal rat cardiac myocytes enhanced NCX1 function and affected [Ca(2+)](i) transient and contraction amplitudes. We suggest that PLM downregulation offers a potential therapeutic strategy for ameliorating contractile abnormalities in MI myocytes.  相似文献   

18.
The photophysics of the complex forming reaction of Ca2+ and Fura-2 are investigated using steady-state and time-resolved fluorescence measurements. The fluorescence decay traces were analyzed with global compartmental analysis yielding the following values for the rate constants at room temperature in aqueous solution with BAPTA as Ca2+ buffer: k01 = 1.2 x 10(9)s-1, k21 = 1.0 x 10(11) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 2.2 x 10(7) s-1, and with EGTA as Ca2+ buffer: k01 = 1.4 x 10(9) s-1, k21 = 5.0 x 10(10) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 3.2 x 10(7) s-1. k01 and k02 denote the respective deactivation rate constants of the Ca2+ free and bound forms of Fura-2 in the excited state. k21 represents the second-order rate constant of binding of Ca2+ and Fura-2 in the excited state, whereas k12 is the first-order rate constant of dissociation of the excited Ca2+:Fura-2 complex. The ionic strength of the solution was shown not to influence the recovered values of the rate constants. From the estimated values of k12 and k21, the dissociation constant K*d in the excited state was calculated. It was found that in EGTA Ca2+ buffer pK*d (3.2) is smaller than pKd (6.9) and that there is negligible interference of the excited-state reaction with the determination of Kd and [Ca2+] from fluorimetric titration curves. Hence, Fura-2 can be safely used as an Ca2+ indicator. From the obtained fluorescence decay parameters and the steady-state excitation spectra, the species-associated excitation spectra of the Ca2+ free and bound forms of Fura-2 were calculated at intermediate Ca2+ concentrations.  相似文献   

19.
Previous studies have shown that myocytes isolated from sedentary (Sed) rat hearts 3 wk after myocardial infarction (MI) undergo hypertrophy, exhibit altered intracellular Ca(2+) concentration ([Ca(2+)](i)) dynamics and abnormal contraction, and impaired sarcoplasmic reticulum (SR) function manifested as prolonged half-time of [Ca(2+)](i) decline. Because exercise training elicits positive adaptations in cardiac contractile function and myocardial Ca(2+) regulation, the present study examined whether 6-8 wk of high-intensity sprint training (HIST) would restore [Ca(2+)](i) dynamics and SR function in MI myocytes toward normal. In MI rats, HIST ameliorated myocyte hypertrophy as indicated by significant (P 相似文献   

20.
The Ca2+ content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca2+ release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca2+ within the SR with the membrane-permeant low affinity Ca2+ chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca2+ content and SR Ca2+ depletion can influence Ca2+ release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca2+ release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca2+ releases increased in frequency and developed into cell-wide Ca2+ waves. SR Ca2+ load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40microTPEN did not significantly inhibit the SR-Ca2+-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca2+ chelator in intracellular Ca2+ stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca2+ leak from the SR leading to its Ca2+ depletion. Lowering of SR Ca2+ content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号