首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Emx1 and Emx2 genes are known to be involved in mammalian forebrain development. In order to investigate the evolution of the Emx gene family in vertebrates, a phylogenetic analysis was carried out on the Emx genes sequenced in man, mice, frogs, coelacanths and zebrafish. The results demonstrated the existence of two clades (Emx1 and Emx2), each grouping one of the two genes of the investigated taxa. The only exception was the zebrafish Emx1-like gene which turned out to be a sister group to both the Emx1 and Emx2 clusters. Such striking sequence divergence observed for the zebrafish Emx1-like gene could indicate that it is not orthologous to the other Emx1 genes, and therefore, in vertebrates there must be three Emx genes. Alternatively, if the zebrafish emx1 gene is orthologous to the tetrapod one, it must have undergone to strong diversifying selection.  相似文献   

3.
4.
The vertebrate brain is among the most complex biological structures of which the organization remains unclear. Increasing numbers of studies have accumulated on the molecular basis of midbrain/hindbrain development, yet relatively little is known about forebrain organization. Nested expression among Otx and Emx genes has implicated their roles in rostral brain regionalization, but single mutant phenotypes of these genes have not provided sufficient information. In order to genetically determine the interaction between Emx and Otx genes in forebrain development, we have examined Emx2(-/-)Otx2(+/-) double mutants and Emx2 knock-in mutants into the Otx2 locus (Otx2(+/Emx2)). Emx2(-/-)Otx2(+/-) double mutants did not develop diencephalic structures such as ventral thalamus, dorsal thalamus/epithalamus and anterior pretectum. The defects were attributed to the loss of the Emx2-positive region at the three- to four-somite stage, when its expression occurs in the laterocaudal forebrain primordia. Ventral structures such as the hypothalamus, mammillary region and tegmentum developed normally. Moreover, dorsally the posterior pretectum and posterior commissure were also present in the double mutants. In contrast, Otx2(+/Emx2) knock-in mutants displayed the majority of these diencephalic structures; however, the posterior pretectum and posterior commissure were specifically absent. Consequently, development of the dorsal and ventral thalamus and anterior pretectum requires cooperation between Emx2 and Otx2, whereas Emx2 expression is incompatible with development of the commissural region of the pretectum.  相似文献   

5.
The regional specialization of brain function has been well documented in the mouse and fruitfly. The expression of regulatory factors in specific regions of the brain during development suggests that they function to establish or maintain this specialization. Here, we focus on two such factors—the Drosophila cephalic gap genes empty spiracles (ems) and orthodenticle (otd), and their vertebrate homologues Emx1/2 and Otx1/2—and review novel insight into their multiple crucial roles in the formation of complex sensory systems. While the early requirement of these genes in specification of the neuroectoderm has been discussed previously, here we consider more recent studies that elucidate the later functions of these genes in sensory system formation in vertebrates and invertebrates. These new studies show that the ems and Emx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective olfactory systems. Moreover, they demonstrate that the otd and Otx genes in both flies and mice are essential for the development of the peripheral and central neurons of their respective visual systems. Based on these recent experimental findings, we discuss the possibility that the olfactory and visual systems of flies and mice share a common evolutionary origin, in that the conserved visual and olfactory circuit elements derive from conserved domains of otd/Otx and ems/Emx action in the urbilaterian ancestor.  相似文献   

6.
Over the last few years great progress has been made in the understanding of the formation of the mouse forebrain. Among the genes involved in this process, the mouse Emx homeobox genes Emx1 and particularly Emx2 play a primary role. Here we describe the mRNA and protein expression related to Emx2 in the developing mouse telencephalon, as well as the results obtained studying the corresponding knock-out mice. Our findings indicate a role for this gene in the specification of the forebrain via the control of cell proliferation, as well as in guiding neuronal migration during development through the cortical plate. These studies will hopefully enable us to better understand the molecular mechanisms underlying the formation of the mouse cerebral cortex as well as to establish relevant interactions between the various proteins present in this region of the brain.  相似文献   

7.
The mechanisms by which the diverse functional identities of neurons are generated are poorly understood. C. elegans responds to thermal and chemical stimuli using 12 types of sensory neurons. The Otx/otd homolog ttx-1 specifies the identities of the AFD thermosensory neurons. We show here that ceh-36 and ceh-37, the remaining two Otx-like genes in the C. elegans genome, specify the identities of AWC, ASE, and AWB chemosensory neurons, defining a role for this gene family in sensory neuron specification. All C. elegans Otx genes and rat Otx1 can substitute for ceh-37 and ceh-36, but only ceh-37 functionally substitutes for ttx-1. Functional substitution in the AWB neurons is mediated by activation of the same downstream target lim-4 by different Otx genes. Misexpression experiments indicate that although the specific identity adopted upon expression of an Otx gene may be constrained by the cellular context, individual Otx genes preferentially promote distinct neuronal identities.  相似文献   

8.
Otx1 and Otx2 in the development and evolution of the mammalian brain.   总被引:2,自引:0,他引:2  
A Simeone 《The EMBO journal》1998,17(23):6790-6798
In the last decade, a number of genes related to the induction, specification and regionalization of the brain were isolated and their functional properties currently are being dissected. Among these, Otx1 and Otx2 play a pivotal role in several processes of brain morphogenesis. Findings from several groups now confirm the importance of Otx2 in the early specification of neuroectoderm destined to become fore-midbrain, the existence of an Otx gene dosage-dependent mechanism in patterning the developing brain, and the involvement of Otx1 in corticogenesis. Some of these properties appear particularly fascinating when considered in evolutionary terms and highlight the central role of Otx genes in the establishment of the genetic program defining the complexity of a vertebrate brain. This review deals with the major aspects related to the roles played by Otx1 and Otx2 in the development and evolution of the mammalian brain.  相似文献   

9.
10.
Emx1 and Emx2 are mouse cognates of the Drosophila head gap gene, ems. Previously we have reported that the dentate gyrus is affected in Emx2 single mutants, and defects are subtle in Emx1 single mutants. In most of the cortical region Emx1 and Emx2 functions would be redundant. To test this assumption here we examined the Emx1 and Emx2 double mutant phenotype. In the double mutants the archipallium was transformed into the roof without establishing the signaling center at the cortical hem and without developing the choroid plexus. We propose that Emx1 and Emx2 cooperate in generation of the boundary between the roof and archipallium; these genes develop the archipallium against the roof. This process probably occurs immediately after the neural tube closure concomitant with the Emx1 expression.  相似文献   

11.
12.
13.
Otx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland. Crx (cone-rod homeobox), a downstream target gene of Otx2, showed a pineal expression pattern similar to that of Otx2, although there was a distinct lag in time of onset. Otx2 protein was identified in pineal extracts and found to be localized in pinealocytes. Total pineal Otx2 mRNA did not show day-night variation, nor was it influenced by removal of the sympathetic input, indicating that the level of Otx2 mRNA appears to be independent of the photoneural input to the gland. Our results are consistent with the view that pineal expression of Otx2 is required for development and we hypothesize that it plays a role in the adult in controlling the expression of the cluster of genes associated with phototransduction and melatonin synthesis.  相似文献   

14.
Recent highlights in vertebrate homeobox gene research include the discovery of new genes with novel expression patterns, observations that peptide growth factors and retinoic acid influence homeobox gene expression, and the generation of mutant phenotypes of embryos homozygous for null mutations. These combined studies reinforce the idea that homeobox genes function near the top of the gene hierarchies controlling vertebrate embryogenesis.  相似文献   

15.
In the former part of the review the principal available data aboutHox genes, their molecular organisation and their expression in vertebrate embryos, with particular emphasis for mammals, are briefly summarized.In the latter part we analysed the expression of four mouse homeobox genes related to twoDrosophila genes expressed in the developing head of the fly: Emx1 and Emx2, related toems, and Otx1 and Otx2, related tootd.  相似文献   

16.
Using a degenerate PCR approach, we performed an exhaustive search of Otx genes in the reedfish Erpetoichthys calabaricus, the dogfish Scyliorhinus canicula, and the hagfish Myxine glutinosa. Three novel Otx genes were identified in each of these species, and their deduced protein sequences were determined over a large C-terminal fragment located immediately downstream of the homeodomain. Like their lamprey and osteichthyan counterparts, these nine genes display a tandem duplication of a 20--25-residue C-terminal domain, which appears to be a hallmark of all craniate Otx genes identified thus far, including the highly divergent Crx gene. Phylogenetic analyses show that, together with their osteichthyan counterparts, the dogfish and reedfish genes can be classified into three gnathostome orthology classes. Two of the three genes identified in each of these species belong to the Otx1 and Otx2 orthology classes previously characterized in osteichthyans. The third one unambiguously clusters with the Otx5/Otx5b genes recently characterized in Xenopus laevis, thus defining a novel orthology class. Our results also strongly suggest that the highly divergent Crx genes identified in humans, rodents, and oxen are the mammalian representatives of this third class. The hagfish genes display no clear relationships to the three gnathostome orthology classes, but one of them appears to be closely related to the LjOtxA gene, previously identified in Lampetra japonica. Taken together, these data support the hypothesis that the Otx multigene families characterized in craniates all derive from duplications of a single ancestral gene which occurred after the splitting of cephalochordates but prior to the gnathostome radiation. Using site-by-site sequence comparisons of the gnathostome Otx proteins, we also identified structural constraints selectively acting on each of the three gnathostome orthology classes. This suggests that specialized functions for each of these orthology classes were fixed in the gnathostome lineage prior to the splitting between osteichthyans and chondrichthyans.  相似文献   

17.
18.
The origin of molecular mechanisms of cephalic development is an intriguing question in evolutionary and developmental biology. Ascidians, positioned near the origin of the phylum Chordata, share a conserved set of anteroposterior patterning genes with vertebrates. Here we report the cross-phylum regulatory potential of the ascidian Otx gene in the development of the Drosophila brain and the head vertex structures. The ascidian Otx gene rescued the embryonic brain defect caused by a null mutation of the Drosophila orthodenticle (otd) gene and enhanced rostral brain development while it suppressed trunk nerve cord formation. Furthermore, the ascidian Otx gene restored the head vertex defects caused by a viable otd mutation, ocelliless, via specific activation and repression of downstream regulatory genes. These cross-phylum regulatory potentials of the ascidian Otx gene are equivalent to the activities of the Drosophila and human otd/Otx genes in these developmental processes. These results support the notion that basal chordates such as ascidians have the same molecular patterning mechanism for the anterior structures found in higher chordates, and suggest a common genetic program of cephalic development in invertebrate, protochordate and vertebrate.  相似文献   

19.
Duplicated homeobox genes in Xenopus   总被引:3,自引:0,他引:3  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号